

SELF-EVALUATION REPORT MODULE 3

EVALUATED UNIT: Faculty of Mechanical Engineering, Czech Technical University in Prague

FORD: 2. Engineering and Technology

MODUL 3 SOCIAL RELEVANCE

SOCIAL RELEVANCE / SOCIAL BENEFIT OF THE EVALUATED UNIT¹

3.1 General self-assessment of the social benefit of R&D&I in the fields of research at the evaluated unit, and of the evaluated unit as a whole

The evaluated unit gives a concise, general but informative account of the benefit of R&D&I in the fields in the 2014–2018 reporting period.

Self-evaluation:

Over the past 20 years, the Faculty of Mechanical Engineering of the Czech Technical University in Prague (FME) has in many areas built up what is nowadays called an ecosystem of university-industrial cooperation. The ecosystem requires a university R&D and teaching/learning background comprising academic knowledge, often a unique instrument and experimental base, and study programs aimed at educating students in their chosen field of specialization. In order to create an ecosystem, however, it is necessary to have the entire sequence from basic science through applied science to industrial R&D. The aim of ecosystem building is to enable industrial enterprises already active in the Czech Republic (CR) to be globally competitive. This will provide benefits for the Czech economy, will raise the standard of living and will make the CR a sought-after attractive country for R&D and for producing new high-tech products. FME is indeed becoming a catalyst for the development of the Czech economy. Ecosystems have been created for the automotive, machine tool, aerospace, energy and manufacturing industries.

HTML links to additional documentation:

https://www.fs.cvut.cz/en/science-research/science-research-at-fme/en-social-benefit-rdi/

¹ In accordance with Section 22(1) of Act No 111/1998 on universities, amending certain acts (the Universities Act), as amended.

APPLIED RESEARCH PROJECTS

3.2 Applied research projects²

The evaluated unit presents a maximum of the five most significant (from the perspective of evaluated unit) applied research projects in the 2014–2018 reporting period from the complete list in the appendix (tables 3.2.1 and 3.2.2), particularly with regard to the results achieved or a project's potential for application.

Self-evaluation:

Josef Bozek Competence Center for Automotive Industry

This is a National Competence Center of TACR, dealing with vehicles from drives to driving and assistance systems with all major carriers.

Center of Competence - Manufacturing Technology

This is a National Competence Center for engineering production technology.

Center of Competence - Advanced Technologies for Heat and Electricity Production

This is a National Center of Competence for Heating and Energy as an Important Element of the Czech Economy.

Flexible Fossil Power Plants for the Future Energy Market through new and advanced Turbine Technologies

In this EU project, a methodology for predicting the thermo-mechanical fatigue of steam and combustion turbine rotors has been developed for fast start-ups to cover the power outages of alternative sources.

Research center for low-carbon energy technologies

This project is focused on research in the field of CO2 capture from combustion processes using biomass and the utilization of captured CO2. It is relevant to climate change research.

HTML links to additional documentation:

https://www.fs.cvut.cz/en/science-research/applied-research-projects/en-centres-ofcompetence/

² Under Section 2(1)(b) of Act No 130/2002, applied research is theoretical and experimental work aimed at gaining new knowledge and skills for the developing of new or substantially improved products, processes or services; applied research includes <u>industrial research or experimental development</u>, or a <u>combination of both</u>. Under Article 2 of Commission Regulation (EU) No 651/2014 of 17 June 2014 declaring certain categories of aid compatible with the internal market in application of Articles 107 and 108 of the Treaty, industrial research means planned research or critical investigation aimed at the acquisition of new knowledge and skills for developing new products, processes or services, or for bringing about a significant improvement in existing products, processes or services. It comprises the creation of component parts of complex systems, and may include the construction of prototypes in a laboratory environment or in an environment with simulated interfaces to existing systems as well as of pilot lines, when necessary for the industrial research and notably for generic technology validation; experimental development means acquiring, combining, shaping and using existing scientific, technological, business and other relevant knowledge and skills with the aim of developing new or improved products, processes or services. This may also include, for example, activities aiming at the conceptual definition, planning and documentation of new products, processes or services.

3.3 Contract research ³

The evaluated unit briefly comments on revenues from contract research for the 2014–2018 reporting period from the complete list in the appendix (tables 3.3.1 and 3.3.2).

Self-evaluation:

FME regularly provides contract research for industrial companies. We thus sell the innovation potential of FME to industry. This is another path, alongside ecosystems, ensuring that knowledge, procedures, instruments and analysis needed by industry will be available not only for collaborative research but also for contractual research. Both forms of research have advantages and disadvantages for industry and for FME in response to many legal, IPR, EC community framework, financial, tax and other considerations.

3.4 Revenues from non-public sources (besides grants or contract research) from research work The evaluated unit briefly comments on revenues for the 2014–2018 reporting period for R&D&I from non-public sources, besides grants or contract research (e.g. licences sold, spin-off revenues, gifts, etc.). It presents a complete list in the appendix (table 3.4.1).

Self-evaluation:

FME systematically obtains revenues from non-public sources to fund activities that are not eligible from other sources, e.g. co-financing of R&D projects, and promotions.

HTML links to additional documentation:

https://www.fs.cvut.cz/en/science-research/science-research-at-fme/en-revenues-non-public/

³ For a definition of contract research for the purposes of evaluation in the universities sector, see Article 2.2.1 of the Community framework for State aid for research and development and innovation (2014/C 198/01).

APPLIED RESEARCH RESULTS

3.5 Applied research results with an existing or prospective economic impact on society

The evaluated unit briefly comments on a maximum of the five most significant (from the perspective of the evaluated unit) applied research results that have already been applied in practice, or that will realistically be applied, in the 2014–2018 reporting period from the overview in the appendix (table 3.5.1).

Self-evaluation:

Supporting structure for repositionable and reconfigurable manipulating arms

This patent addresses the productivity of car body production lines. It is used by Compotech Plus Ltd, which cooperates with Bilsing Automation Ltd to develop robots for fast loading of sheet metal into presses.

Contract for utilization of results – a project under the title Research of Pressing Tools Service Life Extension for Refractory Highly Abrasive Materials

R&D aimed at increasing the durability of tool materials for pressing highly-abrasive refractory materials. It led to significant scrap reduction in production up to 0.1%. Thanks to this project, P-D Refractories CZ Inc. won the largest worldwide orders in the refractory market, for the supply of coke batteries for Japanese company Nippon Steel.

Ultralight aircraft UL-39 Albi (prototype) – an innovative ultralight all-composite aircraft with blower propulsion and a parachute safety system, unique in the world of sport and tourist aviation.

Prototype of a non-wood biomass boiler

This prototype of a 150 kW plant biomass boiler, which was being certified before serial production, is the first of its kind in the CR. In the past, wood biomass boilers had been certified and plant biomass boilers were imported.

Spray Dryer (demonstrator)

This new design of a spray dryer utilizes the results from current R&D investigations that produce an organic nano-structured powder with applications in the food industry and in the pharmacy industry. The license agreement is with DBH Technologies Ltd.

HTML links to additional documentation:

https://www.fs.cvut.cz/en/science-research/applied-research-projects/en-applied-researchresults/

3.6 Significant applied research results with an impact other than an economic one on society

The evaluated unit gives a concise account of a maximum of the five most significant (from the perspective of the evaluated unit) applied research results with an impact other than an economic one on society in the 2014–2018 reporting period (typically results from disciplines in the humanities and social sciences) from the overview in the appendix (table 3.6.1).

Self-evaluation:

Projects undertaken in the Faculty have dealt with reducing and remedying impacts on the environment, and providing a better living environment for humans. There were projects dealing with the emissions produced by transport and their impact on human health; climate change associated with changes in temperature depending on the proportion of built-up areas and greenery; the energy use of reclaimed land after brown coal mining; adjustments to the internal environment to protect cultural monuments; and the impact on children's health of ventilation in schools, and legislation on school ventilation.

HTML links to additional documentation:

https://www.fs.cvut.cz/en/science-research/applied-research-projects/en-results-other-thaneconomic/

COOPERATION WITH THE NON-ACADEMIC ENVIRONMENT AND TECHNOLOGY TRANSFER

3.7 The evaluated unit's most significant interactions with the non-academic application/corporate sphere

The evaluated unit gives a concise account of the most typical users of its outputs. It explains whether and how it identifies them and how it works with them. It provides examples of a maximum of ten of the most significant interactions with the non-academic environment in the 2014–2018 reporting period.

Self-evaluation:

Typical users are manufacturers of particular machines and equipment and their users throughout the industry using collaborative and contractual research. The cooperation is created by a proactive search for R&D opportunities by FME among industry leaders, who return to FME with follow-up projects after positive experience.

Examples:

GE Aviation – has a collaborative contract with FME, and uses a comprehensive testing infrastructure of ground (dynamometric, core, propeller) and flying test cells for the new generation of turboprop engines.

ŠKODA Auto – cooperation in thermodynamic engine simulations, modeling the cycles of vehicles of all drives, gearboxes, internal and external aerodynamics, development of production technologies, etc.

Doosan Group – numerical modeling of the flow in turbines and in parts of turbines, a study on a new CO2 power cycle for WHR application

Unipetrol – R&D of machines and apparatuses in new and existing petrochemical and refinery production and new technologies for raw materials recovery

Carl Zeiss – development of automated quality inspection systems for the automotive, aerospace, transportation, medical and energy industries. The collaboration includes inspection plans, CMM programming, R&D of task-specific fixtures and verification of the whole measurement process for serial production.

Gamma Technologies (USA) – collaboration in research/commercial development/use of GT-Suite software, with a global leader in the field of simulation of internal combustion engines and drive chains.

Tajmac-ZPS – R&D of new concepts of machine tools, e.g. a patented principle for multi-spindle lathes with 75% increased productivity, and cable-based mechatronic stiffness for portal machine tools.

Compo Tech PLUS – co-realization of composite structures with high-performance stiffness and strength parameters, e.g. construction of a light frame for a composite bicycle

ProSpon – R&D of all large joint replacements in cooperation with clinical practice, cooperation in the introduction of implants, tests on 3D printing materials from biocompatible titanium alloys

Brano – regular innovative brainstorming to find new areas of cooperation with FME. A typical result is a worldwide patent protection solution, e.g. the front cover of a car, a damper with a degressive characteristic.

HTML links to additional documentation:

https://www.fs.cvut.cz/en/science-research/applied-research-projects/en-results-nonacademic/

3.8 System and support of technology transfer and intellectual property protection (can be extended to the whole university, emphasising the specific features of the evaluated unit)

The evaluated unit gives a concise account of its system of technology transfer. It conducts an evaluation of the quality of its applied research and the effectiveness of technology transfer using the data presented in the appendix (table 3.5.1). This commentary will highlight the number of filed and granted patents (Czech and international) and licences sold.

Self-evaluation:

The Technology Transfer and Intellectual Property protection system of CTU has a centralized base within the University rectorate. In addition, FME has internal regulations for IPR, conflict of interest and protection of confidential information. FME has model license agreements for master theses with companies and for companies outside FME.

HTML links to additional documentation:

http://evaluation-cvut.cz/files/H2020-Technologytransfer.pdf

3.9 Strategy for setting up and support of spin-off firms or other forms of commercialization of R&D&I results (can be extended to the whole university, emphasising the specific features of the evaluated unit)

The evaluated unit gives a concise account of the practical use of its intellectual property in the form of setting up spin-off firms or other forms of commercialising R&D&I results (both with or without the participation of the university) established by the evaluated unit (university), another entity controlled by the evaluated unit (university), or an employee of the evaluated unit, presenting the model for their functioning and coordination, and control of intellectual property management of the evaluated unit (university).

Self-evaluation:

CTU has a Technology Transfer Office, the InQBay incubator, and a strategy for commercialization of IP. As an extension, FME regularly concludes license agreements on the use of results for collaborative projects. FME offers licensing agreements to companies owned by faculty staff.

HTML links to additional documentation:

http://evaluation-cvut.cz/files/H2020-Technologytransfer.pdf

RECOGNITION BY THE SCIENTIFIC COMMUNITY

3.10 The most significant individual awards for R&D&I

The evaluated unit presents a maximum of ten examples of the most significant R&D&I awards received (in the Czech Republic and in other countries) in the 2014–2018 reporting period.

Self-evaluation:

An award of the Technology Agency of the CR in the Partnership category – for the Josef Božek Automotive Industry Competence Center project.

Best Cooperation of Year 2016 Special prize of the Ministry of Industry and Trade of the CR – for the Advanced control and optimization of heat pump operation project (cooperation betweem FME and Honeywell, Ltd.)

Czech Innovation Award 2015 – a motion thread mechanism, awarded for the best collaboration between a research organization and an industrial enterprise.

Prize of the Chairman of the Grant Agency of the CR for 2016 - for work carried out on a grant-funded project on Biomechanical modeling of human voice creation – a way to artificial vocal cords.

Gold Medal of the 58th International Engineering Fair in Brno 2016 in the category of Innovations in Transport and Logistics, for the prototype of the UL-39 Albi ultralight aircraft.

Gold Medal of the 59th International Engineering Fair in Brno 2017, for the prototype of WeldPrint MCV 5X.

International Award for Lifetime Achievement in Turbomachine Research Prof. Pavel Šafařík.

European Federation of Chemical Engineering Personal Recognition Award in Mixing Prof. Pavel Ditl.

Edwin Walker Prize 2014 from the Institution of Mechanical Engineers (Power Industries Division) London, UK for an article: Petr, V., Kolovratník, M.: Wet steam energy loss and related Baumann rule in low pressure steam turbine. Journal of Power and Energy. 2014, 228 (2), 206-215.

1st place for a presentation on Nanomechanical Characterization of Titanium Alloy Modified by Nitrogen Ion Implantation, at the 18th Int. Conf. on Advanced Materials and Nanotechnology 2016

HTML links to additional documentation:

https://www.fs.cvut.cz/en/science-research/en-awards-rdi/

3.11 Recognition by the international R&D&I community

The evaluated unit provides the following information / examples demonstrating recognition by the international scientific community in the 2014–2018 reporting period, with a commentary:

It presents a maximum of ten examples of its academic staff's participation on the editorial boards of international scientific journals (e.g. editor, member of the editorial board) in the appendix (table 3.11.1),

It presents a maximum of ten examples of the most significant invited lectures by the evaluated unit's academic staff abroad in the appendix (table 3.11.2),

It presents a maximum of ten examples of the most significant lectures by foreign scientists and other guests relevant to the R&D&I field in the appendix (table 3.11.3),

It presents a maximum of ten examples of the most significant elected memberships of professional societies (table 3.11.4).

Self-evaluation:

FME employees are active members of editorial boards and editors of more than 20 national and international scientific and professional journals relevant to fields covered by FME. They review articles published in journals by Elsevier, Springer, Taylor&Francis and by International Scientific Societies. They are involved in the scientific committees of conferences. They give invited lectures and invite important foreign experts to FME for conferences and visits. They are elected members of more than 20 national societies and 15 international societies.

POPULARISATION OF R&D&I

3.12 The most significant activities in the popularisation of R&D&I and communication with the public

The evaluated unit gives a concise account of its main activities in the area of popularisation of R&D&I and communication with the public in the 2014–2018 reporting period, and presents a maximum of ten examples that it considers the most significant.

Self-evaluation:

The activities involve publishing results in traditional and specialized media and on social networks, presentations at trade fairs and for lab tours:

- Promoting articles and interviews. Approx. 1,000 over the period.
- 2 press conferences, 8 press releases, an average of 48 articles per year for the media.
- Presentations at trade fairs: Int Eng Fair in Brno, Future Forces, AERO Friedrichshafen, etc.
- Presentations at events for the public 5 times a year, and presentations of FME labs 8 times a year.

HTML links to additional documentation:

https://www.fs.cvut.cz/en/science-research/science-research-at-fme/en-popularisation-rdi/

APPENDICES (TABLES)

3.2 Applied research projects

3.2.1 Projects supported by a provider from the Czech Republic

As the benefic	As the beneficiary								
Provider	Project title	Support (EUR thousand)							
		2014	2015	2016	2017	2018			
Min Ind	Ducted Fan Ultralight	302.26	127 52						
Trade CR	Aircraft	392,20	137,52						
Min Ind Trade CR	Selection of the Outdoor Air Parameters for Designing of Heat Exchangers in Air- Conditioning		27,97						
Min Edu Youth Sports CR	Development of Vehicle Centre of Sustainable Mobility	323,43	529,08	462,55	452,53	450,84			
Min Edu Youth Sports CR	Support of Sustainability of the Innovation Centre of Diagnostics and Applications of Materials at CTU-FME in Prague	85,90	84,05	9	89,21	88,06			
Min Edu Youth Sports CR	Sustainable Hydrothermal Manufacturing of Nanomaterials	30,65	5,90	2,81					
Min Edu Youth Sports CR	Damage risk assessment, economic impact and mitigation strategies for sustainable preservation of cultural heritage in the times of climate change.	10,50							
Min Int CR	Protection of persons against explosion					97,84			
TA CR	Fatigue Analysis Documentation Office	172,41							
TA CR	Development and application of measurement devices for water plants of small and medium power	15,47	78,25	81,94	62,48				
TA CR	Research and development of advanced boiler for herbaceous biomass	53,35	107,39	109,87	105,70				
TA CR	Protection of zirconium alloys surfaces by polycrystalline diamond films.	49,10	101,20	52,68					

TA CR	Increasing the efficiency of the ducted fan for small aircraft	55,39	152,11	136,61	21,76	
TA CR	Tribological coatings with improved corrosion protection for orthopedic and trauma applications	92,98	200,82	217,22	177,59	
TA CR	Injection moulding technology of bioceramic materials for implant components	159,84	203,57	214,70		
TA CR	Research of oxyfuel combustion in a bubbling fluidized bed for CCS technologies	141,07	106,59	91,78		
TA CR	Research in Intelligent Methods for Economical- Environmental Control of 100 kW Residual Biomass Boiler Prototype	34,50				
TA CR	Mixing Equipment for Sludge Processing	22,88				
TA CR	New materials and coatings for joint replacement bionical design	402,79				
TA CR	Fatigue Analysis Documentation Office	172,41				
TA CR	Advanced technologies for heat and electricity production	774,05	846,57	837,42	694,83	795,77
TA CR	Josef Bozek Competence Centre for Automotive Industry	1601,21	1695,78	1580,99	1566,35	
TA CR	Competence Center - Manufacturing Technology	1065,99	1127,08	982,50	1006,46	1035,76
TA CR	Additive manufacture of high value joint replacement - reliability, performance, individuality			85,82	174,74	218,89
TA CR	Developing tool for prediction and verification of safety and endurance of small arms during impact tests				17,74	24,96
TA CR	Optimization and testing of unmanned aerial vehicles of new concepts				108,43	147,88
TA CR	Precise initialization of water turbine blade geometry using panel				55,64	62,08

	methods and vortex					
	wake					
	Innovative in-line CNC					
TA CR	woodworking centers,				119,45	123,04
-	including automatic					
	multifunctional cell.					
	NOx reduction by SNCR				11.93	59.74
TA CR	for bubbling fluidized					
	bed boilers					
	Development of a unit					
TA CR	for recovering waste				16,79	48,59
in en	heat from extrusion and					
	pressing of oilseeds					
	Study of influence of					
	surface treatment of					
	polymers and metals on					50 58
TA CR	strength of polymer-					50,58
	metal joints with					
	potential use in					
	composite systems					
	Research and					
TA CR	development of					10,30
TACK	advanced boiler for non-					
	wooden biomass II					
	Local sources of heat and					
	electricity in the					52.20
TA CR	municipal environment					52,26
	with possibility of island					
	mode operation					
	Managing migration with					
	a special focus on					
	Ukraine as a tool for					66.36
TA CR	reducing the workforce					66,26
	deficit and increasing the					
	competitiveness of Czech					
	industry					
Total		5656,19	5403,88	4946,88	46981,62	3332,84
As another pa	rticipant			•		
Provider	Project title	Support (EU	R thousand)			
		2014	2015	2016	2017	2018
	Research of the					
	Influence of Orbital Head					
	Welding Technology of					
Min Ind	Thick-Walled					
Trade CR	Tubes/Pipes on Their	37,77	26,39			
	Long-Term Lifetime in					
	Conditions of Modern					
	Power Plants Service					
	The Increasing of the					
	Load Capacity for the					
Min Ind	Gearing of the Spur and					
Trade CR	Helical Gears with help	33,60				
	of the Optimization of					
	the Heat, Chemical-heat					

	and Mechanical				
	Treatment				
Min Ind Trade CR	Research and development of the new generation of the rotary table RT6300-C	29,06			
Min Ind Trade CR	Research of methods of severe accident analysis and risk analysis with the aim to propose conception of further increasing of safety of Czech NPPs operation after Fukushima events	10,90			
Min Ind Trade CR	Large horizontal machine HCW4000-CX	58,11			
Min Ind Trade CR	Heavy-duty vertical lathe table 40/47 with modular drive	53,75	47,28		
Min Ind Trade CR	Complex Solution of Machine Tool Thermal Deformation	78,71			
Min Ind Trade CR	Milling ram for exchangeable milling heads with drilling spindle	55,21			
Min Ind Trade CR	Inprocess measurement	85,35			
Min Ind Trade CR	Development o the hi- tech composite sandwiches for ballistic protection	36,43			
Min Ind Trade CR	Research and deveopment of a bus skeleton from unconventional materials	49,47	15,39		
Min Ind Trade CR	Flexibile machine tool	52,23			
Min Ind Trade CR	Methodology of the Process Analysis for Production of Alloyed Steel Castings with Higher Utility Properties for Heavy and Power Industry	39,44			
Min Ind Trade CR	Conchoidal hydrogenerator - high pressure hydraulic pump of new kinematical conception with rolling piston	43,58			

Min Ind	Safety of New			
Trade CR	Generation of Nuclear	130,75		
induc en	Power Plants			
	Advanced Leveling and			
	Stabilization System for			
Min Ind	Active Floating Mobile			
Trade CR	Modular System			47,73
	(APMMS) for the			
	transport of large			
	structures.			
	Development of a new			
Min Ind	generation of nails for			28.47
Trade CR	osteosynthesis of long			-,
	bones of the lower limb			
	Development of new			
Min Ind	homogenization			
Trade CR	technology high viscous			45,16
	dispersion of the non-			
	newton type			
	Design and			
	manufacturing process			
Min Ind Trade CR	development of primary			
	aircraft parts of			21,45
	advanced shapes of			
	reinforced			
	thermoplastics			
Min Ind	Energy efficient cover for			44.20
Trade CR	advanced production			44,38
N dive lue el	machines			
Trade CR	Smart machine tool			88,52
Min Ind	Heavy Duty Grinder TOS			05.02
Trade CR	Hostivař			95,93
Minlad	Development of a			
	sampler for grain			46,80
Trade CR	sampling			
Minlad	Automatic Field			
	Infiltration Measuring			32,95
Haue CK	Two-Ring Device			
Min Ind	Vertical milling center of			
	medium size with			77,21
Trade CK	increased precision			
	Research and			
Min Ind	development of a higher			
Min Ind Trade CR	efficiency electric			53,82
	traction system for an			
	electric bus			
	Laser technologies for			
Min Ind Trade CR	microstructuring of			
	bionic and functional			26,13
	surfaces of advanced			
	materials			

Min Ind	Development of technological accessories			53.17	81.89
Trade CR	for machine tools				,
-	The modular system of				
	knee joint replacement				
	to enable reconstruction				
N dias tas al	of large defects using				
	porous augmentation			30,38	62,40
Trade CR	and individual				
	replacement for the				
	extreme deformity of				
	bone tissue.				
	Research and				
Min Ind	development of high-			10 56	54 21
Trade CR	speed, high-pressure			19,50	54,21
	pumps				
	Laser technology				
Min Ind	designed for additive nad			46 71	02.03
Trade CR	hybrid metals			40,71	92,03
	manufacturing				
	Additive nad hybrid				
Min Ind	manufacturing			91 91	147 41
Trade CR	technology without the			0 =) 0 =	,
	use of laser				
	Development of design				
Min Ind	and production				
Trade CR	technology of molds for		12,95	53,55	55,38
	refractory vibrocasted				
	materials				
	Development of				
	technology for				
Min Ind	production of ceramic		15.01	65.70	71.26
Trade CR	improve their utility		15,91	65,70	/1,30
	niprove their utility				
	properties and reduce				
Min Ind	Biofilter with dielectric				
Trade CR	heating		8,21	45,16	44,30
	The Development of the				
	Impeller for				
Min Ind	Turbomachine Wheel		43 21	79 49	77 60
Trade CR	with the Cover Discs for		,		,
	a Turbomachine				
	Termovision system for				
Min Ind	non-destructive testing		15,02	25,33	26,60
Trade CR	of weld joints				,
	Energy Efficiency				
Min Ind	Maximization of		27.26	152.00	124 54
Trade CR	KOVOSVIT MAS		37,30	153,00	134,54
	Machines				
	Virtual machining as a				
Min Ind Trade CR	support of advanced		53.64	97.23	101 78
	manufacturing		53,64	97,23	101,78
	technologies for				

	productive and precise					
	machining of complex- shaped parts					
Min Ind	Hybrid manufacturing of					
Trade CR	cutting tools made of			36,25	104,82	88,72
	ultra-hard materials					
Min Ind	Development of a new					
Trade CR	CNC system for			33,29	77,29	82,87
hude en	production machines					
	Performance and					
Min Ind	technology optimization			56.60	101 50	112 70
Trade CR	of multiaxes machine			56,60	121,53	112,70
	tools					
	Development of new					
Min Ind	cleaning technology,					
Trade CR	sterilization and surface			6,07	13,67	18,33
	functionalization of					
	The research of increase					
	shape accuracy way					
Min Ind	nattern of castings					
Trade CR	stracionary			23,30	47,85	46,80
	turbochargers and gas					
	turbines.					
Min Ind	Innovation of an					
Trade CR	unconventional ultralight			25,89	75,96	93,59
Trade CR	all-composite airplane					
	Development of					
	processes applicable to					
IVIIN ING	development and			9,80	46,71	47,97
Haue CK	components for the					
	space industry					
Min Ind	Exhaust of Contaminants					
Trade CR	in Industrial Plants					3,90
	Research and					
	development of the					
Min Int CR	device for efficient				16,82	18,60
	searching and securing					
	of dactyloscopic traces					
	Safety improvement of			22.70	22.00	24.41
	firefighters			22,79	25,69	24,41
	Unexpected					
Min Health	complications of fixed	16.42	12.17			
CR	orthodontic retainers		,			
Min Health	Analysis of visceral pelvic	16.05	12.22			
CR	fascia defects in women	10,05	15,25			
	the optimalization of					
Min Health	physical characteristics	23,83	24.04			
CR	of vascular substitutes		,			
	for low flow					

Min Health CR	Development and comprehensive evaluation of novel injectable, resorbable, porous bone substitute with controlled release of antimicrobial agents					16,18
Min Health CR	Comprehensive pre- clinical evaluation of lateral lumbar spine fusion with hybrid biodegradable nanocomposite porous implant.				28,33	36,77
Min Health CR	Development of innovative biotribological medium for boundary lubrication restoration.		20,01	3	31,60	33,77
Min Health CR	The study of new materials used as articulation surface of joint replacement		10,63	16,54	17,77	19,26
Min Health CR	Technologies of nano- tubes and nano-silver for antibacterial surface treatment of orthopaedic implants		17,89	24,71	23,47	24,10
Min Health CR	The use of nonatigen fish collagen in construction of implants and as drug carriers.		30,31	46,76	47,70	49,14
TA CR	System for monitoring of structures using fiber optic sensors	17,14	39,11	43,39	20,58	
TA CR	Air Cooled Condensers for Power Engineering	38,68	147,16	151,48	132,47	
TA CR	Multifunctional ram with high stroke of a box-in- box concept	17,43		47,50	94,57	44,46
TA CR	Development of technology providing absolute vertical boreholes for security monitoring system of dams	21,61	34,09	33,66		
TA CR	Research and development of technologies for obtaining vegetable oils and cakes with an emphasis on quality of cakes as feed and the appropriateness of used	20,59	46,84	47,20	47,89	

	of the construction					
	materials.					
TA CR	Integrated Tanker Superstructure for Fire Vehicles made by Hybrid Technology	10,46	25,66	22,93		
TA CR	Non-invasive experimental techniques for research of pumps	30,51	64,07	60,30	29,62	
TA CR	The selection and implementation of procedures for low-cycle fatigue evaluating of reactor pressure vessel internals including multiaxial stress state	12,71	25,66	25,89	26,59	
TA CR	Research and development of new generation of application cylinders for flexographic printing and laminating technology using composite, nanocomposite and hybrid materials.	15,73	31,89	32,40	16,26	
TA CR	Advanced technology development of high power grinding for dynamically loaded parts from hard-to-machine super-alloys for power and aeronautics industry with respect to surface integrity	31,24	60,84	61,59	36,27	
TA CR	Research and development of mobile tricanter design and manufacturing technology	22,16	49,66	50,31		
TA CR	QUADRATIC – a new progressive production technology in the field of thin-walled welded tubes production	11,44	22,65	22,86	22,94	
TA CR	Development of resorbable collagen- calcium phosphate nanolayer with controlled elution of antibiotics for implants survival rate enhancement	14,31	36,51	43,91	45,61	
TA CR	The development of intelligent	10,21	29,10	41,69	46,30	

	endoprosthesis with				
	automatic early				
	detection of notential				
	failure				
	Heat numps advanced				
	control and process	26.22	26.65		
TACK	control and process	50,52	30,03		
TACD			52.20	F 4 OF	
TACK	replacement of severe	25,50	53,29	54,05	
	acetabulum defect				
	Development of surface				
TA CR	treatment technologies	40.79	40.72		
	with low degree of	,	,		
	hydrogen ingress				
	Research and				
	development of modern				
TACR	technology processes for	33.81	33.61	23.16	
in en	new application of high-	33,81	33,01	23,10	
	tech reinforced				
	thermoplastic				
	Research of an advance				
TA CR	control method of the	29,06	23,82		
	solid fuels combustion				
	Technology and System				
	for Physical and Spatial				
	Characteristics				
	Determination for				
TA CR	Protection and	51.17			
	Formation of	,			
	Environment and for				
	Increasing of Energy				
	Sources Potential				
	Development of two				
TACP	stage charging group for	00 07	102.66	10.17	
TACK	big regiproceeting engines	55,52	102,00	10,17	
	Accoduractions of Highly				
TA CR	Aerodynamics of Highly	90,80	91,63	92,48	
	Loaded Blade Cascades				
	Materials research of the				
	properties and benaviour				
	of thick-walled clad pipe				
T 1 0 0	bends for economically				
TA CR	important applications,	35,38	38,52	33,88	
	including managing the				
	production certified by				
	notified body with				
-	European powers.				
TACR	Acceleration Simulator of	21 79	16.05	1 18	
	Vehicle Crashes	21,75	10,05	1,10	
	New generation of				
TA CR	construction kits for	35,99	36,32		
	technical education.				
TA CR	Actuator of back leed	53,39			
TAGE	Research and	00.55	02.02		
TACR	development of new	88,55	93,68		

	hybrid composite				
TA CR	Integration, Modularity and Reconfigurability of the TOS NOVA Consortium Machines	117,46	118,54		
TA CR	Compensation of machine tool dynamic	51,43			
TA CR	Productive machining of precise workpieces	106,85	107,83		
TA CR	Research of pressing tools service life extension for refractory highly abrasive materials	44,67			
TA CR	Optimalization of pressure sewerage systems by means of mathematical modeling of their operating status.	30,84			
TA CR	Progressive Material- Technological Increase in Efficiency of the Turbine Blades Production	53,03			
TA CR	Optimization of enameled mixing equipment according to technological needs of end users	23,24			
TA CR	Surface integrity research after impementing new progessive techniques of machining using 4 and 5 axis milling machining centers.	54,48			
TA CR	Development of new composite paint coatings based on 1D nanoobjects	31,05			
TA CR	Springing of rotary working organs	13,62			
TA CR	Reasearch and Development of a Light Superstructure for Electrobus	40,06			
TA CR	Výzkum možnosti využití fyzikálních a matematických modelů pro řešení problematiky prašnosti v reálných podmínkách komplikovaného terénu.	13,08			
TA CR	composite structures for	9,70			

	high-power laser active					
	and adaptive optics					
	Advanced design of the					
	total disc replacement					
TACR	using modern	53 14				
in tott	engineering methods	55,11				
	and progressive					
	technologies					
	The development and					
	modernization of blade					
TA CR	attachments of steam	40,82				
	turbines for theirs	,				
	reliability and lifetime					
	Increase.					
TA CR	Cooling Towers Plume	95,52				
	Abatement					
TA CR	Advanced Aerostructures		129,13	120,74	173,30	130,91
	Research center of					
TA CR	surface treatment	124,29	134,92	142,01	153,29	148,54
	Centre for Applied					
TA CR	Cybernetics 3	1 057,49	1 041,27	1 130,80	1 159,44	1 226,77
	Competence Center of					
TA CR	Bailway Vehicles	72,64	73,31	73,98	75,96	77,99
	Research and					
	development of the					
	electroformed					
	biomimetic materials					
TA CR	with gradient and					25.39
-	composite composition					- ,
	for biomedical					
	applications and smart					
	manufacturing					
	High-speed and					
	lightweight reducer of				122 54	122.42
TACK	Electric Vehicle using				155,54	152,45
	composite materials					
	Development of effective					
	pilot training tools and					
TA CR	methodology with			44,39		
	emphases for increasing					
	the flying safety					
TA CR	Epicyclic Continuously					29.25
	Variable Transmission					
TA CR	Gyroscopic Simulator of					27,30
_	Vehicle Crashes					,
	POLYBET - Development					
	of technological line for					
	waste thermoplastic and					
TA CR	recycled construction				33,16	34,59
	waste recovery for					
	concrete building					
	components					
	components					

	The development of new				
TA 6 0	generation of devices for				47.46
TACR	long-bone				47,46
	osteosynthesis				
	Gradient functionally				
TA CR	structured hip implant				35,33
	with a long life span				
	Truboprop engine				
	performance				
TA 6 0	improvement via				50.00
TACR	development of				58,96
	advanced finishing				
	technologies				
T 1 00	Landfills leachate water				50.04
TA CR	reduction				50,31
T 1 05	Novel ways to dry				10.10
TA CR	extruded feeds				48,40
	Development &				
T 1 05	Validation of Control				22.76
TA CR	Algoritms of High Speed				32,76
	Electric Machines				
	Progressive				
TA 6 0	nanotechnologies for	1.1.10	15.00	45.00	
TACR	food and medical	14,48	15,06	15,00	
	applications.				
	Advanced system for				
	vehicle rear view				
TA CR	monitoring with			57,27	57,40
	protection against				
	damage and dirt				
	Acustic optimization of				
TA CR	induced draft cooling			75,28	72,50
	towers				
	Innovation of key				
TA CR	structural nodes of water			54,69	64,74
	turbine				
	Intelligent diagnostic				
TA CR	unit of street lighting			28,48	29,25
	poles				
	UL-LSA STOL class				
	aircraft "KITPLANE" –				
TA CR	developmnt, prototyping			37,37	59,04
	and testing of novel				
	aircraft				
TACP	Turbine profile cascades			28.22	20.00
TACK	for supersonic flow fields			28,33	29,09
	Modeling of CHF-boiling				
TA CR	crisis by using CFD			36,88	38,18
	computer codes				
	Advanced Analytical				
TA CR	Tools for Severe Accident			18,99	19,50
	Simulations				

TA CR	High performance polymer implants with				56,13	66,88
	bioactive surface					
	Development of new					
	technology for common					
TA CR	application of				37,03	34,16
	electrophoretic paint					
	systems					
	Research of NOx					
	reduction in flue gas					
TA CR	within the oxyfuel				61,91	61,46
	combustion CCS					
	technology					
	Headstock HS180 for					
TA CR	horizontal boring				61,98	71,13
	machines					
	Increase of multi-					
TACD	functional turning				71 70	77.00
TACR	machining centre				/1,/8	//,68
	accuracy					
TA CR	Robotic machine head				86,59	101,55
	Implementation of multi-					
	physics numerical					
TA CR	analysis into the				65,82	74,84
	development process					
	opto-mechanical systems					
	Development of a new					
	series of planetary					
	gearboxes, with flexible					
	pin technology, for					
	industrial and energy		5256	E4 01		
TACK	applications, in order to		52,50	54,01	50,51	
	minimize overall					
	dimensions, weight and					
	internal transmission					
	losses.					
	The development of					
TA CR	accurate rifle with a		59,60	59,48	55,91	
	composite hybrid barrel					
	Treatment of					
TACR	concentrated waste		16.16	17.87	10 37	
IA Ch	suspensions from		10,10	17,07	10,57	
	energetic equipment					
	Research and					
TACR	development of the		48 57	60 33	64 19	
in tott	unified series of large-		10,07	00,00	01,20	
	capacity electric buses.					
	Progressive					
TA CR	nanotechnologies for		14.48	15.06	15.00	
	tood and medical			15,06	,	
	applications.					
T 4 67	Life extension and repair					10.00
TACR	process development of		64,14	64,74	57,05	10,06
	116AI4V compressor					

	blades used in turboprop					
	engines					
	Reduction of Hg, HCl and					
TA CR	HF concentrations from					18,52
	large industrial sources					
	Efficiency Increasing of					
TA CR	Turbine Wet Steam Last					68,24
	Stages					
	Conceptual design of					
TACD	safety-important					
	components of helium-					10 01
TACK	cooled fast					10,21
	demonstration reactor					
	ALLEGRO					
	Conditions and resources					
	for the sustainable					
	development of the					
TA CR	quality of working life in					13,02
	the Czech Republic in the					
	era of the emerging					
	industrial revolution					
Total		3800,75	3272,55	3216,81	4733,04	5411,46

3.2.2 Projects supported by a provider from another country

As the beneficiary							
Provider	Project title	Support (EU	R thousand)				
		2014	2015	2016	2017	2018	
EC	INTElligent FIXture for the manufacturing of low rigidity components	49,40	29,87	3,59			
EC	Integration and Management of Performance and Road Efficiency of Electric Vehicle Electronics	33,34	56,45	6,95			
EC	New materials and control for a next generation of compact combined solar and heat pump systems with boosted energetic and exergetic performance	22,34	4,98				
EC	Dynamic manufacturing of thin-walled work pieces by Milling process	82,01	8,36				
EC	Sustainable Hydrothermal Manufacturing of Nanomaterials	30,65	5,90	2,81			
EC	Damage risk assessment, economic impact and mitigation strategies for sustainable preservation of cultural heritage in the times of climate change.	10,50					

EC	Centre for civil nuclear	39,95	40,32			
	Development of advanced					
FC	engine brake for diesel				78 16	
20	trucks engines				70,10	
	Large-volume transport and					
FC	temporary storage of mixed					143 47
20	municipal waste					1 10,17
	Research centre for low-					
EC	carbon energy technologies					1 836,76
	Center of Advanced					
EC	Aerospace Technology					26700,39
Total		268,19	145,88	13,35	78,16	28680,62
As another pa	rticipant					
Provider	Project title	Support (EU	R thousand)			
	-	2014	2015	2016	2017	2018
	TURBOmachinery REtrofits					
	enabling FLEXible back-up					
EC	capacity for the transition				87,61	
	of the European energy					
	system					
	ADvancing user acceptance					
	of general purpose					
EC	hybridized Vehicles by				110,60	
	Improved Cost and					
	Efficiency					
	Future Research, Advanced					
EC	Development and				13,02	
	Implementation Activities					
	for Road Transport					
	Rewartrain Control for					
FC	Economic and Clean Real			15 66		14.00
	driving emission and fuel			15,00		14,00
	ConsUMption					
	Elexible Fossil Power Plants					
	for the Future Energy					
EC	Market through new and			106,62	43,34	
	advanced Turbine			,	,	
	Technologies					
	Real World Advanced					
EC	Technologies for Diesel			28,66	26,01	
	Engines					
FC	Gas-Only internal		41 57		63 55	59.93
	combustion engines		-+1,J/		03,35	55,55
	The innovative system for					
	coke oven wastewater					
EC	treatment and water			49,67		
	recovery with the use of					
	clean technologies					
EC	Clothes Perception and	61,42				
	ivianipulation					

EC	Development optalmo endoscope					6,01
EC	Research and development of diesel aircraft engines				37,79	175,10
Total		61,42	41,57	200,60	381,92	255,03

3.3 Contract research

3.3.1 Research work contracted by a client from the Czech Republic

Client	Research title	Revenues (EUR thousand)						
		2014	2015	2016	2017	2018		
VIIAB	Development of a							
Pharma a s	calculation methodology	2,54	1,65					
11111111, 0.5.	for thermal radiation							
	Proof of the static							
	strength of four types of							
	blowers (T65 / 50, T26 /							
	50, T5 / 50 and DI 1 O							
Atlas Copco	ANT) and three coolers	5.45	23.09					
s.r.o.	(D065 / 50, D026 / 50	-,						
	and DO 5150) for nuclear							
	power plants, with							
	respect to standard							
	PNAE G-7-002-86.							
	Numerical analysis of the							
Variel, a.s.	static strength of tram				11,14			
	sandwich roots with							
	giued equipment fixtures							
č7	Development of fatigue	24.00	22.05	2.54				
CZ a.s.	analysis pocedures for	21,88	22,05	2,54				
	Research and							
	development of high							
Honeywell,	norformance tasks with	14.07						
spol. s r.o.	the use of optical fiber	14,07						
	damage detection							
	model and FEM							
Variel a s	calculation of		9 37					
variet, a.s.	thecomposite sandwich		5,57					
	roof of tram A							
Compo Tech	Provision of services for							
PLUS, spol. s	testing and analysing				12,08	25,45		
r.o.	composite materials							
	Mechanical methods and							
Meopta-	simmulations of		10.10					
optika s.r.o.	electromechanical		10,19					
	composite systems							
	Mechanical methods and							
Meopta-	simulations of				24.14	20.28		
optika s.r.o.	electromechanical				24,14	29,30		
	composite systems							

Všeobecná fakultní nemocnice	Mechanical characterization of hemostatic collagen foams					7,73
MOSA Solution s.r.o.	Determining the position of acoustic exciters for cleaning power equipment			3,70	1,86	
Vojta s.r.o.	Development of algorithms for food line control	4,62	4,96	1,30	4,82	
Dopravní podnik hlavního města Prahy	Research and measurements of the electrical properties of tram wheels				6,65	
Energocentr um Plus s.r.o.	Energocentrum Plus - Building data monitoring		9,90			
ZK- TERMOCHE M, spol. s r.o.	Monitoring manual welding and tracking evaluation for ZK- TERMOCHEM		14,62			
VM ENGINEERIN G s.r.o.	Intelligent Thermostat, for VM ENGINEERING		4,31			
KPC Group, s.r.o.	Prague innovation voucher	9,66				
ROX spol. s r.o.	Automated workplace for supervisory control of the output of a circular vibratory conveyor				6,08	
Teco a.s.	Relay Identification for PLC Teco Foxtrot				5,70	
Dopravní podnik hlavního města Prahy	Analysis of the system for detecting and signaling an impending collision with another tram car in the rail network					15,60
Electrolux, s.r.o. Praha	Development of an Experimental Setup					10,80
ŠKODA AUTO a.s.	Experimental Research on Car Cooling System Components	212,46				
Intecha, spol. s r.o.	Analysis of Hydrocyclons	17,11				
Stavebniny HOSANA spol. s r.o.	CFD Simulation of Turbomachines	9,07				
FANS, a.s.	Direct Air Condensation	7,26				
Společnost pro výzkum	Validation of a CFD Model	6,25				

ŠKODA	A Condensed Water	7 99				
AUTO a.s.	Drain	7,55				
ŠKODA	Design of a Test Setup	8 84				
AUTO a.s.	Design of a rest octup	0,01				
ŠKODA	Design of an Oil	8.91				
AUTO a.s.	Separator	0,0 -				
	A comparison of water					
Mavel a.s.	pump design using the	4.36				
	2D and 3D Panel Method	,				
	and CFD Simulation					
ŠKODA	An Investigation of the					
AUTO a.s.	Components of a Car		178,91	344,45	84,21	
<u></u>						
Electrolux,	Support for Electrolux		52,84	43,76		15,15
s.r.o.	Product Design					
ŠKODA	An investigation of the		17.02			
AUTO a.s.	Coolor		17,93			
	Cooler Tomporature Effect					
ŠKODA	within a Car Engine		21.07			
AUTO a.s.	Compartment		21,07			
ŠKODA	compartment					
AUTO a s	Intercooler Test Bench		7,27	8,02		
Doosan						
Škoda Power	Model of a Water Steam		1.83	14.52	12.13	
s.r.o.	Vacuum Pump		,	,= _		
Pavel						
Tošovský	Propeller Design		8,27			
Mariala	Design of Sections of a		4.40			
waver a.s.	Water Turbine		4,40			
Škoda	An investigation of the		8 0 J			
motorsport	Airflow through a Cooler		0,92			
Continental	Design of a Power			0.16	0.67	
Automotive	Assistant System			9,10	0,07	
AERO						
Vodochody	Experimental Setup for			77 58	3 3/	
AEROSPACE	Aero Vodochody			11,50	3,34	
a.s.						
ŠKODA	Modification of a Multi -			7.43		
AUTO a.s.	Purpose Separator			1,1.0		
NAFIGATE	The setup for long-term					
Corporation,	ageing tests on an Air			4,49		
a.s.	Filter					
Intecha,	Measurements of the			2.07		
spol. s r.o.	efficiency of a			3,87		
Mavel a.s.	water turbing			4,27		
Castro						
Production	Research on the heat				5.26	
sro	losses of a cooling box				5,20	
Nami-Trade	Heat and Mass Flow					
s.r.o.	Measurement				4,71	
-						

MYPLAST	An investigation of				22.22
s.r.o.	cooling tower fills				22,23
Brentwood Europe s.r.o.	Drift test at CTU				20,93
VVV MOST	Hose conveyor - straight	2 62	1 10	2 0 2	
spol. s r.o.	part	5,05	4,40	5,62	
Pragometal,	Verification of test stand		4 70		
spol. s r.o.	functions		4,70		
IMATECH	Testing an idler for a		4.20		
GROUP s.r.o.	conveyor belt		4,29		
Bednar FMT	Design of a belt conveyor	0.91			
s.r.o.	for an agricultural trailer	9,81			
	Development of a built-				
Wikov Industry a.s.	in strain gauge apparatus for measuring gear mesh	45,07			
,	quality in industrial				
	planetary gearboxes				
Noen, a.s.	modeling	9,81			
Modřany	Software for calculating the strength of gate	9,81			
Irade, s.r.o.	valves and pressure locks	,			
STS Prachatice, a.s.	Testing equipment for electrohydraulic systems	10,73	7,98		
Pontex, spol. s r.o.	Modernization of the boat lift - Orlík Waterworks	4,00			
ZVVZ MACHINERY, a.s.	Fan blade turn mechanism design	4,72	6,60		
MEDIROL s.r.o.	Analysis of the suitability of the material- composite fork travel		6,60		
PANAWORK S, s.r.o.	Mechanism inside a bicycle stem		4,58		
Wikov Industry a.s.	Design Verification of an Intermeshing Mixer Gearbox		7,33		
Hlavní město Praha	Elaboration of an explanatory report for the announcement of a tender for reconstruction of lifts			6,84	
STROS- Sedlčanské strojírny, a.s.	Lift research			15,17	
PREOL a.s.	Transmission failure analysis			10,17	
EKOEFEKT a.s.	A proposal for a new technical solution of the construction and drive fo the separation of a fuel			4,44	

	tank from the combustion space in an automatic brown coal boiler					
HENNLICH, s.r.o.	Tests on shaft seals					5,65
Dekonta a.s.	A mobile modular box system for on-site use					5,85
United Energy, a.s.	Model analysis and experimental analysis of the recent efficiency of limestone utilization in CHP plant Komořany	16,34				
Uchytil s.r.o.	An evaluation of the thermal efficiency of a K4 fluidized bed boiler				6,39	
Žatecká teplárenská, a.s.	A study for the greening of coal boilers	5,59				
Glanzstoff- Bohemia s.r.o.	A study of equipment for environment-friendly disposal of odorous emissions	4,10				
Ostrovská teplárenská, a.s.	A study of the replacement of existing boilers by greener boilers fired by coal and biomass	4,36				
H & D Engineering spol. s r.o.	Reconstructing or modifying K3 and K4 boilers for use as multi- fuel boilers	10,90				
G.A.M. HEAT spol. s r. o.	Design and construction of a stand for measuring plate heat exchangers	10,05	6,39			
Teplárny Brno, a.s.	A review of the concept of large production units in CHP plants in Brno.		13,93			
Teplárna Otrokovice, a.s.	An assessment of the desulphurization process in the Otrokovice CHP plant			4,81		
ŠKO- ENERGO, s.r.o.	An assessment of the impact of an increased share of biomass co- combustion on CFB boilers in ŠKO-ENERGO, s.r.o.		8,28			
ČEZ, a. s.	Computer models of steam boilers		14,84			
Ventos Energy Solutions, a.s.	Software for the design of heat exchangers for waste heat recovery			4,44		

BRONSWERK HEAT TRANSFER	Laboratory measurements of the thermal characteristics of an air cooler			4,56	
Palivový kombinát Ústí, s.p.	A basic feasibility study for the use of hydric reclamation in the Ústí Region for energy purposes (pumped storage power plants)		73,72		
ČEZ, a. s.	Creation of computer models of pulverized coal fired boilers operated by ČEZ, a.s.		4,81		
ŠKO- ENERGO, s.r.o.	An assessment of the fuel change for the combustion of 100% biomass in the ŠKO- ENERGO fluidized bed boiler			22,47	
Škoda Praha Invest s.r.o.	The influence of changes in fuel parameters on the parameters and the emissions of a boiler in the Ledvice 660 MWe power plant			4,37	
Ventos Energy Solutions, a.s.	Ventos - Software for the design of heat exchangers for waste heat recovery			4,56	
Žatecká teplárenská, a.s.	Effective control of heat production in the Žatec heating plant				8,19
Teplárna České Budějovice, a.s.	An assessment of a new business concept for the České Budějovice heating plant after 2020			11,98	
ČEZ, a. s.	ČEZ - Tests with mercury capture from boilers in the Trmice heating plant				4,11
VEOLIA ČESKÁ REPUBLIKA, a.s.	Conversion of the Veolia K8 boiler for biomass combustion				4,87
ČEZ, a. s.	An expert study on available technologies for capturing Hg from flue gases				8,19
Policie ČR	An explosion of a steam boiler for sulfur combustion	5,78			
United Energy, a.s.	Availability of So2 limit = 180 mg / nm3 on tky ii boilers			11,69	

ENERGOTRA NS, a.s.	Optimization of combustion, reduction of NOx and CO production			4,29	
Omega Teplote. Praha	Wet Stack – a condensation analysis			6,08	
EGAP, a.s.	Preparation of a technical feasibility study for the Yunus Emre- Adularya 2 x 145 MW thermal power plant			13,29	
ČEZ, a. s.	An analysis of the possibility of storing electricity into heat				5,08
Doosan Škoda Power s.r.o.	Shape modifications of the balancing slots in an impulse turbine with a drum rotor arrangement	16,71			
Doosan Škoda Power s.r.o.	An experimental investigation of the liquid phase of wet steam in a 1000 MW nuclear power plant steam turbine	9,90			
Doosan Škoda Power s.r.o.	An experimental investigation of the liquid phase of wet steam in a 1000 MW nuclear power plant steam turbine	8,79			
Doosan Škoda Power s.r.o.	An experimental investigation of the liquid phase of wet steam in a 1000 MW nuclear power plant steam turbine	5,35			
Doosan Škoda Power s.r.o.	CFD numerical simulations of the wet steam flow in the low pressure part of a 1000 MW nuclear plant steam turbine		8,43		
Doosan Škoda Power s.r.o.	An experimental investigation of the steam wetness in the L-O stage of LPST at NPP Temelin		12,87		
Doosan Škoda Power s.r.o.	CFD numerical simulations of the wet steam flow in the low pressure part of a 1000 MW nuclear plant steam turbine		8,43		

Doosan Škoda Power s.r.o.	An experimental investigation of the steam wetness in the L-O stage of LPST at NPP Temelin		12,84			
Doosan Škoda Power s.r.o.	CFD numerical simulations of the wet steam flow in the low pressure part of a 1000 MW nuclear plant steam turbine			17,02	28,69	
Doosan Škoda Power s.r.o.	Experimental investigation in a 1090 MW steam turbine			20,94		
Doosan Škoda Power s.r.o.	Experimental investigation of the steam wetness in steam turbines, and a numerical simulation of wet steam energy losses.				22,11	
Doosan Škoda Power s.r.o.	CFD numerical simulations of the wet steam energy losses in a 1000 MW steam turbine					27,41
E.ON České	Transition phenomena in				5,32	
INOMECH	Behavior of radiators for					
s.r.o.	heating food casings		4,26			
MINIB, a.s.	Development of an induction unit			5,41		
Mondi Štětí, a.s.	Drying air balance while optimizing the operation of high-performance drying covers		3,78			
Kotrbatý V.M.Z., spol. s r.o.	Innovation of radiating panels for heating industrial areas			4,44		
Greif- akustika s.r.o.	Acoustic absorber measurements				5,69	
EXPO 2020	Development of a unit for extracting water from air					99,43
JVTP - Jihočeský vědeckotech nický park	Behavior analysis of the innovated radiator				5,70	
Devro, s.r.o.	A description of the collagen package production process with the use of mathematical modeling	6,40	19,18			
SMOLO a.s.	New design of an evaporator and a					17,55

	crystallizer for separating					
	industrial salts					
	Expert advice on a					
wetrostav	technical evaluation of a					6,32
a.s.	municipal waste					
Zoměd	the purification of the					
Zemeu.	fugato from a biogas	1,82	2,97	2,96		
vyzkum	nigate from a blogas					
	Applysis and					
	Analysis and					
Synthos a.s.	critical and weak points					18,33
	of a cooling plant					
	Identification of the					
	operation parameters of					
	a vacuum evaporator	5,19				
TIAND, 3.1.0.	prototype					
	Laboratory tests on					
Prokop	distillery flops and	1 90				
Invest, a.s.	fugates	4,90				
	An analysis of the					
Intecha	process for separating					
snol s r o	coke particles from		5,31			
500.51.0.	quench oil					
	The basic design and					
ΑΟUACOMP	operation parameters of					
HARD, s.r.o.	vacuum evaporation			5,36		
HARD, S.I.O.	with crystallization					
_	Design and optimization		4.50			
Tenez a.s.	of mixing equipment		4,58			
HENNIJCH	An analysis of the					
sro	condenser of the OCR		4,36			
	unit					
	Design of the drying					
MEGA a.s.	technology for ionex		4,40			
	particles					
KOVOFINIS	Design of the ejector for			3,92	1,06	
s.r.o.	a vacuum evaporator					
Intecha,	Design and construction			2.22	1 71	7 25
spol. s r.o.				3,33	1,/1	7,25
	2D design of a container					
	3D design of a container					
AIVICON Europo s r o	constrating and mixing			3,88		
Europe s.i.o.	sludge and chemicals					
Uninetrol	Design of a filtration unit					
a.s.	for TFA solution			6,29		
4.5.	Analysis of the flow and					
T&T. Turnov	distribution of air in the					
s.r.o.	pattern chamber of a				4,04	
	fusing line					
	Design of the technology					
EGI	for producing				8,51	

	ethylglycole from PET					
	waste					
	An investigation of the					
MONTS	shaft sealing of an				13.33	
s.r.o.	impeller for a pressure				-,	
	vessel					
	Optimization of					
Glanzstoff-	production processes,					
Bohemia	lines and equipment in				17,05	24,76
s.r.o.	an industrial plant for					
	the production of					
	artificial fibres					
Dushža	Design of a pilot plant for				0.40	
Prusa	pre-treatment of PEI				9,12	
	powder technology					
	Optimization of the					
.	hydrodynamics of a					c c2
Polycasas	coating system for					6,63
	treating transparent					
	plates					
	An analysis of particle					
Průša	size distribution – the					5,83
	parameters					
	An ovnorimental					
ŠKODA	An experimental			071		
AUTO a.s.	behaviour			8,74		
ŠKODA	Measurements of the					
	efficiency of gearboxes			4,91		
A010 a.s.	Mounting kit for the fifth					
GKR STEEL	wheel hitch for Nissan				18 61	
s.r.o.	Navara				10,01	
ŠKODA	Development of a gear					
AUTO a.s.	shifting mechanism				11,92	
Faton	Simulation-based Engine					
Flektrotechn	Brake Concept Analysis			26.26	12.93	
ika s.r.o.	and Optimization					
	Roadside measurements					
ÚAMK. a.s.	of particle emissions				3.41	11.90
	from individual vehicles				-,	
ŠKODA	Heat Transfer in Internal					
AUTO a.s.	Combustion Engines	4,16				
ŠKODA	Engine Testing Under					
AUTO a.s.	Transient Conditions	33,40				
ŠKODA	Exhaust system					
AUTO a.s.	development and testing	5,67				
ČKOD A	An experimental					
SKODA	description of a modern	10,90				
AUTO a.s.	manual gearbox					
ŠKODA	Engine Testing Under	07.07	0.77			
AUTO a.s.	Transient Conditions	87,87	8,77			
ŠKODA	An experimental					
	description of the	8,40				
A010 a.s.	behaviour of an engine					

	exhaust system, related					
	to emission standards					
ŠKODA	Vehicle Simulation on an	25.22				
AUTO a.s.	Engine Test Cell	25,22				
ŠKODA	Optimization of an	0.00				
AUTO a.s.	engine intake manifold	8,90				
ŠKODA	Modification of a new		0.05			
AUTO a.s.	separator concept		9,05			
SGS Czech	The effect of fuel					
Republic	composition on engine		5,35			
s.r.o.	parameters					
ŠKODA	An experimental					
	description of 6th gear		8,77	8,85		
AUTU a.s.	behaviour					
Eaton	Dovelopment of a data					
Elektrotechn	acquisition system		4,33			
ika s.r.o.	acquisition system					
ŠKODA	Energy Balance of an IC				22.28	
AUTO a.s.	Turbocharged Engine				25,50	
VarioTec	Simulation and testing of					10.92
s.r.o.	a two-stroke engine					19,85
ŠKODA	Mass balance of the					
	water component in an		8,63			
AUTU a.s.	MQB separator					
ŠKODA	An experimental					
	description of joint shaft				6,02	
AUTU a.s.	temperatures					
ŠKODA	Development testing of				11 27	
AUTO a.s.	joint shafts				11,57	
ŠKODA	An experimental					
	description of final drive					9,86
A010 a.s.	behaviour					
ŠKODA	Carsharing for college			277	24 57	EQ 10
AUTO a.s.	students			7,75	54,57	36,42
ŠKODA	A methodology for					
	transient testing of a		31,51			
A010 a.s.	small SI engine					
ŠKODA	Transient testing of a		31.02			
AUTO a.s.	small SI engine		51,92			
ŠKODA	Tests on the exhaust gas		5 50			
AUTO a.s.	system of an SI engine		3,30			
ŠKODA	Carsharing for college		12.01			
AUTO a.s.	students		13,01			
	Laboratory and on-road					
	evaluation of the					
Seven	emissions from light-			30.61		
Energy	duty commercial vehicles			30,01		
	powered by compressed					
	natural gas					
ŠKODA	Heat balance of an SI			17.76		
AUTO a.s.	engine			17,70		

ŠKODA	Development of the				
AUTO a.s.	control strategy for a		4,34		
	hybrid venicle				
TEDOMA	An evaluation of the			11.00	
TEDUIVI a.S.	from a cogeneration unit			11,90	
	The temperature				
ŠKODA	hebayior of a vehicle in				
	the driving cycle and			44,91	
A010 a.s.	during conditioning				
	Design of an internal				
ADW	combustion engine			12,25	
~	Simulation model of a				
ŠKODA	natural gas combustion			9.33	
AUTO a.s.	engine			0,00	
SGS Czech	Behavior analysis of the				
Republic	injection system of an SI			5,33	
s.r.o.	engine			,	
-	A model and				
TEDOMA	experimental description			0.10	
TEDOIVI a.s.	of combustion engine			9,10	
	properties for a CHP unit				
ŠKODA	R&D activities on the				
	chassis dyno-thermal				60,23
AUTU a.s.	behaviour of vehicles				
	Measurements of the ZS				
Ricardo	engine on a roller /				15 76
Prague s.r.o.	Measurements of the ZS				13,70
-	engine test bed				
SGS Czech	An experimental				
Republic	description of a				4.71
s.r.o.	turbocharged SI engine				,
	in various regimes				
Národní	Integrated Contribution				
centrum	from the				
competence	Commercialization of				
Josefa Bozka	Research Results for				200.14
pro pozemni	Automotive and Rail				300,14
uopravni prostřodky	(Škoda Auto, Škoda				
	Transportation Zetor				
/01	etc)				
Honeywell	Simulation of				
spol s r o	Turbocharged Engines	14,37			
Stroiírny	Model-based				
Bohdalice.	Optimization of a Stirling	5,01			
a.s.	Engine	- / -			
ŠKODA		0.04			
AUTO a.s.	Venicle A-box model	8,81			
ŠKODA	Fluid flow viewelization	0.02			
AUTO a.s.	Fiuld flow visualization	9,03			
ŠKODA	Emulation of Vehicle				
	Driving Cycles, using the	50,80			
	Engine Test Cell				

JIHLAVAN airplanes,	Research on the strength parameters of the JA-400 all-metal low-wing			5,55	18,99	
s.r.o.	airplane					
Direct Media s.r.o.	Conceptual design of an airplane			27,82		
LPS Automotive, s.r.o.	Development of a drone for inspecting linear structures					20,93
Roko Airplanes s.r.o.	Conceptual design of an ultralight airplane					17,85
UNEX a.s.	Technology transfer for UNEX IVT foundries	94,39	21,38			
ProSpon spol. s r.o.	Experimental tests on the material properties of samples 3D printed from titanium alloy Ti6Al4V				3,80	7,02
Moravskosle zský automobilov ý klastr	High-strength steels for components in the automotive industry		59,67			
METAL TRADE COMAX, a.s.	A technological audit of heat losses			7,62		
SŽDC - Správa železnic	Research on the corrosion protection of bridges and steel structures		22,91			
LCV Praha, s.r.o.	Development of the polishing and marking of steel surfaces by a fiber laser		4,58			
ŠKODA AUTO a.s.	Research on the weldability and formability of steels and sandwich materials			10,56		
ŠKODA AUTO a.s.	Weldability tests on high strength steels (22MnB5) with an Al-Si coating, used in the automotive industry.					
Metalurgie Rumburk, s.r.o.	2015 - Typing elements during technological operations of the forming process, 2016 - Casting molding technology for machine tools of the parent company, 2017 - Optimization of fettling operations, a proposal		4,85	5,62	5,89	

	for an endoscopic				
	inspection of castings				
	2015 - Development and				
	verification of 3D				
	printing technology for				
	small models on own 3D				
	Peyclopment and design				
	of changes in machine				
	casting technology				
Slévárna	Hollotex verification				
Chomutov	2017 - Design of	5 51	5 56	5 71	8 85
a.s.	innovative technology	3,31	3,30	3,7 1	0,00
0.5.	and equipment for the				
	heat treatment set of				
	manganese steels				
	2018 - Operational				
	verification of the				
	efficiency of innovated				
	equipment for TZ in year-				
	round climatic conditions				
	2016 – An analysis of				
	knowledge about the				
	production of precision				
	LLG castings, 2017 –				
IFGero	Developing the		9 5 1	2 1 2	1 17
120 3.1.0.	technology for the LLG		8,51	3,42	4,17
	heavy casting "carrier",				
	2018 – Verification of the				
	prototype for "carrier"				
	production				
	2016 - Isothermal				
	hardening of LKG				
	castings, and use of the				
	ather types of east iron				
Industrial	and stool 2017				
Engineering	Conditions and principles		4,44	3,04	7,80
Group s.r.o.	of LKG heat treatment to				
	ADI values 2018 - Heat				
	treatment processes for				
	castings and wrought				
	aluminum allovs				
	2017 - Development of				
	technology and				
	operating standards for				
Saint Gobain	repair welding of valve				
PAM CZ	castings, 2018 -			1,14	5,07
s.r.o.	Verification and				
	confirmation of molding				
	compound parameters				
	for the AFL molding line				

	2018 – An investigation					
Buzuluk a.s.	into the causes of cracks					6,63
	in the roller top shaft					
	An assessment of the					
Ředitelství	suitability of the steel					
silnic a	structure of bridge SO		5,43			
dálnic ČR	202 on the D47		,			
	motorway					
DIRAC	Design and verification					
Industries	of tube election			4.62		
sro	technology			4,02		
3.1.0.	Improvements to the					
Konvalac	fivation system for				0.40	
Kervara.s.	korunda haddalay tilas				9,40	
	An analysis of north					
IVIETAL3D	An analysis of parts				9,42	
s.r.o.	produced by 3D printing				-	
	High-strength steels for					40.04
Kerval a.s.	components in the					19,24
	automotive industry					
CTIV	Research on surface	5.98	8.54	8.59	10.35	2.67
	treatment and welding	3,30	0,01	0,00	10,00	2,07
S.A.F. Praha	Research on abrasion	7.01				
spol. s r.o.	resistant materials	7,01				
Ďoditolství	Diagnosis of corrosion					
cilnic a	protection for the			16.42		
	internal surfaces of			10,42		
dainic CR	arches					
	An assessment and the					
Kornet s.r.o.	development of a new					15,56
	forming technology					
	Production of metal					
Kornet s.r.o.	stampings					6,63
	Greening of the Energy					
Lovochemie,	Source in Lovochemie				20.88	
a.s.	a s				20,00	
Ředitelství	Research in the field of					
silnica	corrosion and corrosion				2 72	12/12
	attack				5,72	12,42
Synthesia	Crooping of the operation					
Synthesia	source in Synthesia a s				19,75	
d.S.	Source in Synthesia, a.s.					
Svarecska	Design and testing of		4,89	0,18	1,92	
skola Šepela	weiding procedures					
CEPS Invest,	lests on steel			5,97		
a.s.	construction elements			,		
IWT.EWT	Development and testing	8.82	12.55	4.65	1.93	
,	of a carbon plate	- / -	,	,	,	
	Schneider Electric ACM3					
	optimization of the					
SOPO s.r.o.	production technology			9,93	16,41	18,02
	for segmented stators in					
	division 003					
Schäfer -	Research on the				70.20	74.27
Menk s.r.o.	technical-organizational				70,30	/4,2/

	level of the production					
	nrocesses in Schäfer-					
	Menksro -					
	Rationalization of					
	production					
	Development of a dry					
	machining process					
Deecen	Design of the protecture					
Doosan	Design of the prototype					
Bobcat	production layout in				5,23	3,08
Engineering	Doosan Bobcat					
s.r.o.	Engineering s.r.o.					
	Contractual research for					
	the industrial metrology					
	division of Carl Zeiss -					
	development of					
	automated quality					
	inspection systems for					
	the automotive,					
Carl Zeiss	aerospace,					
spol. s r.o.	transportation, medical	22,39	61,88	60,95	56,36	42,69
open e ner	and energy industries.					
	This involves inspection					
	plans, CMM					
	programming, the design					
	of fixtures and					
	production and process					
	qualification at the					
	customer site.					
P-D	P-D Refractories CZ -					
Refractories	Development of the		4,20	5,88	3,86	
CZ, a.s.	HVOF removal method					
	SOPO - Production					
SOPO s.r.o.	Process Optimization in		21,99	6,47		
	SOPO s.r.o.					
	Development of grinding					
	process parameters,					
N dilungungung	fixtures and					
wikronex,	programming for a		6,37	11,33		
s.r.o.	special grinder for					
	automated production of					
	glass files and raspers					
	Research on the					
	technical-organizational					
	level of the production					
	processes in Schäfer-					
Schäfer -	Menk s.r.o					
Menk s.r.o.	Rationalization of			20,59		
	production, Design of the					
	layout and the material					
	flow of a new production					
	site					
	Development of					
VIAAITAas	Integrated Logistical			21.39	14.72	30.04
	Support for the supply of			,00	,, 2	20,01
	sapport of the supply of					

	special bridge cranes for the Jules Horowitz Reactor in Cadarache (FMEA, FMECA, SIL)					
ŠKODA AUTO a.s.	An analysis of modern approaches to the maintenance of production systems, and their applicability in the context of Škoda Auto (Maintenance 4.0)				15,45	3,30
GE Aviation Czech, s.r.o.	Development of residual stress measurements on turbine airfoils 2014- 2017	21,79	22,50	16,31	10,92	
Attl a spol. s r.o	Optimization of laser welding and forming of stainless steels			3,53	5,24	5,28
Kerval a.s.	Optimization of the door frame manufacturing process					5,65
BLUE RAY a.s.	Design of individual machine nodes, analysis and optimization.	22,23	29,03			
TOOL AXIS s.r.o.	Constructional modification of a machine			10,36		
JIHLAVAN airplanes, s.r.o.	Flutter analysis of the GP ONE aircraft	4,81				
Rokospol Aviation s.r.o.	Flutter analysis of VIA NG UL and VIA NG4 LSA aircraft		5,15			
lvanov Aircraft	Research on the load capacity of the composite wing of Explorer aircraft		4,76			
LA Composite, s.r.o.	Research on selected material characteristics of composite materials		3,98			
Doosan Bobcat Engineering s.r.o.	Fatigue analysis of welding joints		13,93			
LA Composite, s.r.o.	Research on selected material characteristics of composite materials			3,95		
HPH, spol. s r.o.	Flutter analysis of EB29R aircraft			5,50		
HPH, spol. s r.o.	Flutter analysis of EB29R aircraft				6,91	
HPH, spol. s r.o.	Flutter analysis of TWIN SHARK aircraft					6,48

ZALL JIHLAVAN airplanes, s.r.o.	Flutter analysis of JA-600 aircraft					6,76
Národní centrum kompetence - NCK TN01000008 /06	VERTICAL ADAPTER - design calculations of several spindle variants					15,56
Národní centrum kompetence – NCK TN01000008 /06	Design of technical concepts for an automatic process. Processing conceptual topics for the technical solution of the head. Evaluation of proposals. Processing of an overview report					4,68
PBS Turbo s.r.o.	Analysis of the technology and the creation of an impeller prototype	10,85	29,30	0,64	9,75	
PBS Energo, a.s.	Modeling and production of impeller blades	20,91	11,64	7,01	23,53	
ITS s.r.o.	Cooperation with ITS on CNC software - cycle library simulation	2,03	1,91	0,92		
ATEKO a.s.	Analysis of the technology and the creation of an impeller	48,81	8,97	28,60	19,25	
SOMA spol. s r.o.	Analysis and measurements of the thermal behavior of the ZAYER machine and the temperature conditions in two production halls.	4,63		11,44	7,42	
Flexicat s.r.o.	Development and production of a prototype of a multi- wheel hand grinder	5,45				
KOVOSVIT MAS a.s.	Development of construction nodes, including technological parameters	129,03	172,09	170,11	99,14	85,04
CODA DEVELOPME NT s.r.o.	Development of machine nodes, including technological parameters	4,01				
DAM Ústí nad Labem s.r.o.	Construction designs	25,55	11,00			
Zkušebna VUOS, s.r.o.	An analysis of the thermal deformation of	12,75				

	the supporting structure of the Jupiter machine with a polymer concrete bed					
Pittsburgh Corning CR s.r.o.	Vibration analysis	3,79				
BLUE RAY a.s.	Computational designs of machine nodes, analyses of drive settings	3,92	13,92	12,70	1,29	
LAMMB technology s.r.o.	Development and structural design of a headstock and a spindle	17,58	4,83	4,33		
Mavel, a.s.	Development of computational and optimization procedures for a water turbine casing		0,73	1,63	12,53	
JNC construct s.r.o.	Optimization of a horizontal milling machine and the design for a carousel		24,58			
TOOL AXIS s.r.o.	Design and calculation analyses of machine nodes, technological support in the field of drives and postprocessors		6,03	2,84	13,99	16,16
GRUND a.s.	Modification of the construction of a twelve- needle machine for testing the principle of creating a 3D carpet structure with variable pile length		9,16	7,06		
TOSHULIN, a.s.	Design of optimized hydrostatic guidance of the x and y axis of the FORCETURN 4000 machine, optimization of the frame rigidity of Powerturt 1000 III		2,28	3,48	11,17	
Jihočeský, a.s. VEDE	Provision of development services within innovative vouchers		5,13	14,98	11,58	5,81
Nomatech s.r.o.	A conceptual study of modifications to the kinematics of the drive of the BHV 250C machine			3,11	4,33	
VTL Blansko, a.s.	Measurements and analysis of the operating parameters of hydrostatic lines		5,98			

BAEST Machines & Structures, a.s.	Calculation of tanks				7,60	
KMB systems s.r.o.	Innovation of the ENVIS software environment			4,00		
ROKA Industry, spol. s r.o.	Innovation of cutting machine cross member design, including calculations			5,55		
RETOS VARNSDORF s.r.o.	WH10CNC headstock analysis and measurements			3,93	2,38	
Hestego a.s.	Computational and design analyses of telescopic covers. Analyses of samples of damping materials	0,49	7,93	0,40		
KDK Automotive Czech s.r.o.	An analysis of the large dispersion of armrest folding forces. The state of the production and assembly of the armrest		4,09	13,19		
Národní bezpečnostn í	Development of a system for controlling tested devices during TEMPEST measurements in a shielding measurement chamber	1,21	0,92	9,58	5,78	
Strojírna Tyc. s.r.o.	Design and calculations for spindle heads				1,33	15,56
Meopta - optika, s.r.o.	A pre-design study of the centric head					4,68
TRATEC-CS s.r.o.	Technical design solutions, strength calculations of machine construction nodes	13,58	12,73	16,10	5,28	0,35
Slovácké strojírny, a. s.	Development and realization of a multifunctional grinding machine	0,44		2,96	0,91	37,27
TOS KUŘIM - OS, a.s.	Optimization of the construction of a 16 m carousel, and the development of machine construction nodes	71,04	43,07	43,87	9,83	
Erwin Junker Grinding Technology a.s.	Computational analysis of construction nodes	99,79	20,81	6,57	8,23	11,46
Kornet s.r.o.	Cooperation in the MIT Potential project	10,90				

FRONTIER	Development of new					
TECHNOLOG	design and construction			0,81	7,88	
IES, s.r.o.	of LED lighting					
TOS	Computational analysis					
VARNSDORF	of machine construction			32,27		
a.s.	nodes					
	Development and					
ALTA, a.s.	visualization of "16m"			5,06		
	machine design					
	Development of a					
	mathematical -					
OCHI -	simulation model for					
INZENYRING	determining the			12,21		
, spol. s r.o.	kinematic - dynamic					
	parameters of multiaxial					
TCC	arives					
IGS	Development of the					
nastroje-	design, construction and					
technologick	drawing documentation			4,39		
é služby	of a mobile kitchen unit					
sro	for the production hall					
5.1.0.	Diagnostics and analysis					
ČКD	of the occurrence of					
BLANSKO-	vibration when the SKD	5.20	1.43			
OS. a.s.	40 / 47D machine is	-, -	, -			
	tuned on					
Dormer	Technological tests	10.05				
			10640	1 20 17	7 16	
Pramet s.r.o.	rechnological tests	19,05	29,60	20,14	7,16	
Pramet s.r.o.	Design of an algorithm	19,05	29,60	20,14	7,16	
Pramet s.r.o.	Design of an algorithm and realization of a	19,05	29,60	20,14	7,16	
Pramet s.r.o. Kistler	Design of an algorithm and realization of a software application for	19,05	29,60	20,14	7,16	
Pramet s.r.o. Kistler Eastern	Design of an algorithm and realization of a software application for measuring the torque of	9,66	29,60	4,44	7,16	
Pramet s.r.o. Kistler Eastern Europe s.r.o.	Design of an algorithm and realization of a software application for measuring the torque of rotating tools with the	9,66	29,60	4,44	7,16	
Pramet s.r.o. Kistler Eastern Europe s.r.o.	Design of an algorithm and realization of a software application for measuring the torque of rotating tools with the use of stationary	9,66	29,60	4,44	7,16	
Pramet s.r.o. Kistler Eastern Europe s.r.o.	Design of an algorithm and realization of a software application for measuring the torque of rotating tools with the use of stationary dynamometers	9,66	29,60	4,44	7,16	
Pramet s.r.o. Kistler Eastern Europe s.r.o. Continental	Design of an algorithm and realization of a software application for measuring the torque of rotating tools with the use of stationary dynamometers Automated borehole	9,66	29,60	4,44	7,16	
Pramet s.r.o. Kistler Eastern Europe s.r.o. Continental Barum s. r.	Design of an algorithm and realization of a software application for measuring the torque of rotating tools with the use of stationary dynamometers Automated borehole drilling to great depths for aluminum allou	9,66 4,67	29,60	4,44	7,16	
Pramet s.r.o. Kistler Eastern Europe s.r.o. Continental Barum s. r. o.	Design of an algorithm and realization of a software application for measuring the torque of rotating tools with the use of stationary dynamometers Automated borehole drilling to great depths for aluminum alloy	9,66 4,67	29,60	4,44	7,16	
Pramet s.r.o. Kistler Eastern Europe s.r.o. Continental Barum s. r. o.	Design of an algorithm and realization of a software application for measuring the torque of rotating tools with the use of stationary dynamometers Automated borehole drilling to great depths for aluminum alloy production	9,66 4,67	29,60	4,44	7,16	
Pramet s.r.o. Kistler Eastern Europe s.r.o. Continental Barum s. r. o.	Design of an algorithm and realization of a software application for measuring the torque of rotating tools with the use of stationary dynamometers Automated borehole drilling to great depths for aluminum alloy production Performing cutting tests by milling to verify the	9,66 4,67	29,60	4,44	7,16	
Pramet s.r.o. Kistler Eastern Europe s.r.o. Continental Barum s. r. o. SHM, s. r. o.	Design of an algorithm and realization of a software application for measuring the torque of rotating tools with the use of stationary dynamometers Automated borehole drilling to great depths for aluminum alloy production Performing cutting tests by milling to verify the effect of surface	9,66 4,67 8,17	29,60	4,44	4,48	4,88
Pramet s.r.o. Kistler Eastern Europe s.r.o. Continental Barum s. r. o. SHM, s. r. o.	Design of an algorithm and realization of a software application for measuring the torque of rotating tools with the use of stationary dynamometers Automated borehole drilling to great depths for aluminum alloy production Performing cutting tests by milling to verify the effect of surface treatments	9,66 4,67 8,17	29,60	4,44	4,48	4,88
Pramet s.r.o. Kistler Eastern Europe s.r.o. Continental Barum s. r. o. SHM, s. r. o.	Design of an algorithm and realization of a software application for measuring the torque of rotating tools with the use of stationary dynamometers Automated borehole drilling to great depths for aluminum alloy production Performing cutting tests by milling to verify the effect of surface treatments Measurements of cutting	9,66 4,67 8,17	29,60	4,44	4,48	4,88
Pramet s.r.o. Kistler Eastern Europe s.r.o. Continental Barum s. r. o. SHM, s. r. o.	Design of an algorithm and realization of a software application for measuring the torque of rotating tools with the use of stationary dynamometers Automated borehole drilling to great depths for aluminum alloy production Performing cutting tests by milling to verify the effect of surface treatments Measurements of cutting forces. Analyses of	9,66 4,67 8,17	29,60	4,44	4,48	4,88
Pramet s.r.o. Kistler Eastern Europe s.r.o. Continental Barum s. r. o. SHM, s. r. o. Technologic	Design of an algorithm and realization of a software application for measuring the torque of rotating tools with the use of stationary dynamometers Automated borehole drilling to great depths for aluminum alloy production Performing cutting tests by milling to verify the effect of surface treatments Measurements of cutting forces. Analyses of deformations and static	9,66 4,67 8,17	29,60	20,14 4,44 3,20	7,16 4,48 0,53	4,88
Pramet s.r.o. Kistler Eastern Europe s.r.o. Continental Barum s. r. o. SHM, s. r. o. Technologic ké centrum	Design of an algorithm and realization of a software application for measuring the torque of rotating tools with the use of stationary dynamometers Automated borehole drilling to great depths for aluminum alloy production Performing cutting tests by milling to verify the effect of surface treatments Measurements of cutting forces. Analyses of deformations and static stiffness. Analyses of	9,66 4,67 8,17	29,60	20,14 4,44 3,20	7,16 4,48 0,53	4,88
Pramet s.r.o. Kistler Eastern Europe s.r.o. Continental Barum s. r. o. SHM, s. r. o. Technologic ké centrum	Design of an algorithm and realization of a software application for measuring the torque of rotating tools with the use of stationary dynamometers Automated borehole drilling to great depths for aluminum alloy production Performing cutting tests by milling to verify the effect of surface treatments Measurements of cutting forces. Analyses of deformations and static stiffness. Analyses of drive settings.	9,66 4,67 8,17	29,60	20,14 4,44 3,20	7,16 4,48 0,53	4,88
Pramet s.r.o. Kistler Eastern Europe s.r.o. Continental Barum s. r. o. SHM, s. r. o. Technologic ké centrum	Design of an algorithm and realization of a software application for measuring the torque of rotating tools with the use of stationary dynamometers Automated borehole drilling to great depths for aluminum alloy production Performing cutting tests by milling to verify the effect of surface treatments Measurements of cutting forces. Analyses of deformations and static stiffness. Analyses of drive settings. Optimization of the	9,66 4,67 8,17	29,60	20,14 4,44 3,20	7,16 4,48 0,53	4,88
Pramet s.r.o. Kistler Eastern Europe s.r.o. Continental Barum s. r. o. SHM, s. r. o. Technologic ké centrum Lehman Ponó	Design of an algorithm and realization of a software application for measuring the torque of rotating tools with the use of stationary dynamometers Automated borehole drilling to great depths for aluminum alloy production Performing cutting tests by milling to verify the effect of surface treatments Measurements of cutting forces. Analyses of deformations and static stiffness. Analyses of drive settings. Optimization of the production technology	9,66 4,67 8,17 2,18	1,83	20,14 4,44 3,20 4,19	7,16 4,48 0,53 6,74	4,88
Pramet s.r.o. Kistler Eastern Europe s.r.o. Continental Barum s. r. o. SHM, s. r. o. Technologic ké centrum Lehman René	Design of an algorithm and realization of a software application for measuring the torque of rotating tools with the use of stationary dynamometers Automated borehole drilling to great depths for aluminum alloy production Performing cutting tests by milling to verify the effect of surface treatments Measurements of cutting forces. Analyses of deformations and static stiffness. Analyses of drive settings. Optimization of the production technology for composite parts	9,66 4,67 8,17 2,18	1,83	20,14 4,44 3,20 4,19	7,16 4,48 0,53 6,74	4,88
Pramet s.r.o. Kistler Eastern Europe s.r.o. Continental Barum s. r. o. SHM, s. r. o. Technologic ké centrum Lehman René VINCI	Design of an algorithm and realization of a software application for measuring the torque of rotating tools with the use of stationary dynamometers Automated borehole drilling to great depths for aluminum alloy production Performing cutting tests by milling to verify the effect of surface treatments Measurements of cutting forces. Analyses of deformations and static stiffness. Analyses of drive settings. Optimization of the production and	9,66 4,67 8,17 2,18	29,60 1,83	20,14 4,44 3,20 4,19	7,16 4,48 0,53 6,74	4,88

Česká	of the machining					
republika,	technology for plastic					
s.r.o.	parts					
	An analysis of the					
Rupet formy	existing process of deep					
a modely	drilling and power milling			6,40		
s.r.o.	of aluminum alloys					
	An analysis of the					
Mosled	technology and the					
sro	machining of a turbine			3,89		
5.1.0.	and a nump whool					
	and a pump wheel					
	Development and testing			2.02	6.50	
RUTANA a.s.	of tools for milling nickel			2,92	6,50	
	alloys					
Unicut s.r.o.	Analysis and functional	0,74	1,20		3,61	
	tests on milling tools	- /	, -		- / -	
	An analysis of the					
BEZNOSKA.	technological					
sro	parameters for the		3,02	3,35	9,12	
5.1.0.	production of stainless					
	steel components					
	Debugging and selection					
SANBORN,	of optimum cutting			0.92		
a.s.	conditions on a specified			9,82		
	material					
Sandvik	Selection and					
Chomutov	optimization of a suitable					
Precision	technology for the		6,43			
Tubes s.r.o.	production of pipe ends					
SAHOS a.s.	Drive analysis and tuning	17.03		3.95		
	Measurements and			0,00		
Linde Gas	analyses of					
	turbocompressor	1,47	1,09	2,95	1,95	
a.s.	vibrations					
	Design of production					
	technology and					
GE Aviation	technology and			4.04	24.21	
Czech, s.r.o.	the superior to be for			4,94	24,31	
	three variants) or					
	prototype parts					
	Creation of an SW					
	adapter for the					
v-tech. s.r.o.	Heidenhain iTNC530					12.26
,	control system for					, -
	communication via the					
	Mtconnect protocol					
×	Development of a					
Štěpánek	postprocessor and a		6.43			
Libor	simulation model for a		0,13			
	CNC milling machine tool					
DITIC	An assessment of ways					
invostiční	to automate the					E 20
sro	marking, packaging and					5,50
5.1.0.	dispatch process					

KOVOSVIT MAS, a.s.	Computational support for the design of the internal structure of a machine				11,81	
TRATEC-CS	Designs, models and				6 32	
s.r.o.	visualizations				0,32	
TOS KUŘIM -	Computational support				19.22	
OS, a.s.	for structural designs				10,25	
KOPOS KOLÍN a.s.	Preparation of computational models for ANSYS software					4,59
	316 other research tasks	155,98	215,21	181,99	149,55	155,26
Total		1719,32	1707,51	1810,31	1448,08	1593,54

Note: List and describe contract research work with the revenue for the calendar year in question.

3.3.2 Research work contracted by a foreign client

Client	Research title	Revenues (EUR thousand)				
		2014	2015	2016	2017	2018
Volkswagen	Design and Callibration of an Experimental Flow Meter for Wind Tunnel Tests.		7,92		10,54	
Electrolux Italia	Operation of a joint Electrolux – CTU Prague Technology Centre					32,87
Brentwood Industries	Research on Fluctuations in the Parameters of Cooling Fills due to Ageing	7,54				
Sorbeum Enviro	Design of an Adsorbtion Cooling System		6,33			
Volkswagen	Design of Pressure Tabs			10,26		
North-West University	Advanced High Temperature Reactor cycle optimization for a 100MWt He-cooled reactor			13,92	38,28	
Doosan Heavy Industries	Development of a Supercritical Carbon Dioxide Cycle for Waste Heat Recovery		71,90	69,27		
University of Pécs	Energy consumption of buildings	9,96				
Amot	Market study for a no- leakage G valve			3,90		
Joint Research Centre	MiniPEMS - Miniature on-board portable emissions monitoring system			13,79		
τνο	Measurements of the exhaust emissions of small motorcycles				4,91	
Jaguar	The turbocharging pulse factor as an important accuracy improvement for turbocharger matching	20,48				
KIMM HGM	Heat generation modelling and experimental analysis for an oil-air lubricated angular contact ball bearing; Development of a thermal analysis module for spindle design with angular contact ball bearing				37,70	

TRENS SK, a.s.	Measurements of the temperature behavior of the turning center, and the creation of a compensation algorithm for the temperature errors of the machine in the x axis, design sweeps			5,70		
FMC Kongsberg Subsea	Shah Deniz II. simulation and optimization	312,43	69,13			
ЕМСО GMBH	FEM Analysys of old and new HT45 turning centers in two kinematic configurations					21,59
SOLIDCAM LTD.	Development of a special methodology for suppressing chatter vibration in milling		26,51			
RODERS GMBH	Simulation analyses of the cross slide and the spindle stock of the RXU1000 machine tool	16,11				
KONSTRUKTA INDUSTR.	An audit of the technology for cutting and compression line products	9,30	0,66			
DOOSAN MACHINE TOOLE	A project proposal for developing a thermal error compensation model of the DOOSAN VC 630/5Ax machine tool. Tests on the model.					36,29
	3 MORE RESEARCH TASKS	2,41				1,26
Total		378,22	182,44	116,84	91,43	92,01

Note: List and describe contract research work with the revenue for the calendar year in question.

3.4 Revenues from non-public sources (besides grants or contract research)

3.4.1 Overview of revenues from non-public sources raised for the 2014–2018 reporting period

Revenue type	Revenu	les (EUR	thousand	d)	
	2014	2015	2016	2017	2018
A gift for the development of cooperation between the	1.00				
endowment and the company	1,82				
Gift for a student competition		0,92			
Gift from dr. Thomas Morel - According to point I. – of CZK 18					
023 600,- for supplementing the testing equipment and in					
support of basic research to improve the efficiency, the				000 75	
environmental impact, and the control of the heat mode				809,75	
(cooling and heating) for electric, hybrid or internal					
combustion engine slack					
Gift from a GE Collaborative Contract				569,69	1739,27
Gift in support of experimental research on the characteristics			14.00		
of a two-entry turbine turbocharger			14,80		
Gift in support of the development of a 1D model radial	10.10	7 22			
turbine turbocharger	18,16	7,33			
Gift in support of STČ	0,64	3,56	2,66	2,54	2,22
Giftin support of the creative activities of the CTU Cartech	44.07	52.44	47.64	12.64	20.02
student team	41,27	52,41	47,61	42,61	28,62
Gift to cover a part of the cost of participating in a workshop				2,28	
Gift to cover the costs of conferences	2,91				1,75
Gift to finance education and science		3,67	3,70		
Gift for the acquisition of a control sensor for an open test					
institute in the CVUM FS CTU laboratory					6,63
Gift for the acquisition of preheating and annealing resistance					
equipment for plasma welding during a controlled				9,47	
temperature cycle					
Gift for the acquisition of a telemetry multichannel kit					9,75
Gift for the construction of new equipment for testing shifting					0.75
mechanisms					9,75
Gift for research on sheet weldability for the production of				0.40	
automotive bodywork				9,49	
Gift to fund science, education and the all-round development					
of CTU in Prague, Faculty of Mechanical Engineering, Institute	1,82	0,73	4,96	5,89	6,92
of Environmental Technology					
Gift for the purchase of sensors and measuring cards to extend		5.86			
mounting vibration diagnostics		5,80			
Gift in support of the Department of Energy Ú 12115, mainly					
to finance science, education, professional travel and research,		0,37			
development and teaching					
Gift in support of the Department of Energy Ú 12115, mainly					
for financing science, education, professional travel and	3,67				
research, development and teaching					
Gift in support of the scientific activities of students of the	0.73				
Institute of Process and Processing Technology	0,75				
Gift in support of research and education for students	7,26				
Gift as a contribution to the implementation of the project on					
extending the experimental background of the Institute of			9,11		
Fluid Mechanics and Thermodynamics					

Gift for reconstruction of the aerodynamic tunnel – the					
installation of an air conditioner to enable air current		7,20			
temperature control					
Gift to develop the research base of the Institute of Production		3 67			5 85
Machinery and Equipment		3,07			5,65
Gift to reimburse part of the costs for reconstructing the			6 50		
measuring laboratory for education and research			0,39		
Proceeds from the License Agreement to the MPO FR-TI1/047				5 70	
Project (Composite Surface Finishes)				5,70	
Proceeds from the license agreement to avg. model No. 26034		2.00			
(Neutron camera)		3,09			
Revenue from the contract for the use of results achieved					
under TAČR project TA02011251 (Optimization of enamelled			1,07		
mixing equipment)					
Revenue from the contract for the use of results achieved					
under TAČR project TA02011367 (New type of pressing mould			6,42	15,26	9,79
and protective coating)					
Revenue from the contract for the use of results achieved					
under TAČR project TA03010844 (Surface Treatment				0,08	0,02
Technology)					
Revenue from the contract for the use of results achieved					2 1 4
under TAČR project TA04010600 (Force grinding technology)					2,14
Revenue from the contract for the use of results achieved					
under TAČR project TA04020658 (Functional sample of				0,97	
tricanter)					
Revenue from the contract for the use of results achieved				0.45	0.00
under TAČR project TE01020020 (Turbocharger)				0,45	0,89
Revenue from the contract for the use of results achieved					
under TAČR project TA02010243 (Mixing equipment for sludge		0,73			
processing)					
Total	78,28	89,54	96,92	1474,18	1823,60

Note: List funds for R&D&I from non-public sources, besides grants or contract research (e.g. licences sold, spin-off revenues, gifts, etc.) in each calendar year.

3.5 Applied research results with an economic impact on society

3.5.1 Overview of applied research results in the 2014–2018 reporting period

List and describe the results that have already been applied in practice, or that will realistically be applied, with an existing or prospective economic impact on society. Under "patents" and "licences sold", list all the results; under other results list a *maximum* of five items. Unless otherwise specified below, the definition of a result must correspond to the definitions under the Methodology for Evaluating Research Organisations and Research, Development and Innovation Purpose-Tied Aid Programmes, Appendix No 4: Definitions of Types of Results.

Results	Year	Title
European patent		
EP 2732928B1	2018	REDUNDANT DELTA MANIPULATOR
EP 3183098B1	2018	A DEVICE FOR CONTROL OF A SPHERICAL MOTION OF
		A BODY
American patent		
US 9364932	2016	DEVICE FOR A BODY'S SPHERICAL MOTION CONTROL

US 9358646	2016	SUPPORTING STRUCTURE FOR REPOSITIONABLE AND RECONFIGURABLE MANIPULATING ARMS
US 9297332 B2	2016	CYLINDER HEAD WITH ANNULAR VALVE FOR INTERNAL-COMBUSTION ENGINE
US 10139327 B2	2018	INDENTATION DEVICE, INSTRUMENTED MEASUREMENT SYSTEM, AND METHOD FOR DETERMINING THE MECHANICAL PROPERTIES OF MATERIALS BY THE INDENTATION METHOD
Czech licenced patent		
CZ 305435	2015	FLUIDIZED BED FURNACE AIR DISTRIBUTOR
Licence UCHYTIL s.r.o., Brno, CZ		
Other foreign patents		
Russian Federation, RU 2538038	2014	ELECTRONIC CIRCUIT FOR THE EVALUATION OF INFORMATION FROM VARIABLE ELECTRIC RESISTANCE SENSORS
China, Patent CN 105143721	2017	AN APPARATUS FOR OPENING AND CLOSING A LID PIVOTALLY CONNECTED TO A FRAME, ESPECIALLY A CAR BOOT LID
Licences sold		
Utility Model CZ 26034	2015	NEUTRON CAMERA
Licence TVARMETAL s.r.o.		
Utility Model CZ 26644	2015	MIXING DEVICE FOR HOMOGENIZATION OF
Licence TECHMIX s.r.o.		HETEROGENIC SUSPENSIONS
Utility Model CZ 28216	2015	DEVICE FOR EFFICIENT HEATING AND COOLING IN
Licence TECHMIX s.r.o.		LONG VESSELS
Utility Model CZ 28341	2016	AGITATING DEVICE, ESPECIALLY FOR ENAMELED
Licence TENEZ a.s.		APPARATUSES
Utility Model CZ 25123	2016	AXIAL HYDROFOIL IMPELLER FOR ENAMELED
Licence TENEZ a.s.	2015	
TAD2011267	2015	
Licence P-D Refractories C7 a s		MATERIALS
Contract on utilization of results – project	2017	ADVANCED TECHNOLOGY DEVELOPMENT OF HIGH
TA04010600		POWER GRINDING FOR DYNAMICALLY LOADED PARTS
Licence První brněnská strojírna Velká		FROM HARD-TO-MACHINE SUPER-ALLOYS FOR POWER
Bíteš, a. s.		AND AERONAUTICS INDUSTRY WITH RESPECT TO
		SURFACE INTEGRITY
Contract on utilization of results – project	2017	RESEARCH AND DEVELOPMENT OF MOBILE
TA04020658		TRICANTER DESIGN AND MANUFACTURING
Licence První brněnská strojírna Velká		TECHNOLOGY
Bites, a. s.	2017	
Contract on utilization of results – project	2017	
Licence \tilde{C} 2 s		
Licence agreement - project MDO EP	2016	
TI1/047	2010	COMPOSITES SURFACE TREATMENT DEVELOPMENT
Licence CVP Galvanika, s.r.o		BASED ON ZINC WITH I OW FRICTION COFFFICIENT
		(COMPOSITE SURFACE TREATMENT)
Contract on utilization of results – project	2014	DEVELOPMENT OF SURFACE TREATMENT
TA03010844		TECHNOLOGIES WITH LOW DEGREE OF HYDROGEN
Licence PRAGOCHEMA spol. s r.o., Czech		INGRESS
Airlines Technics, a.s.;		

Software copyright licences	2016	SOFTWARE FOR THE DESIGN OF HEAT EXCHANGERS
(author: doc. Ing. Tomáš Dlouhý, CSc.)		FOR HEAT RECOVERY
- Ventos s.r.o.		
Significant analyses / surveys / studies		
Research Report	2015	Dlouhý, T.; Hrdlička, F.; Hrdlička, J.: ASSESSMENT OF BIOMASS CO-COMBUSTION INCREASE ON FLUIDIZED BED BOILERS OPERATION IN THE SKO - ENERGO CHP PLANT
Research Report	2016	Krátký, L.; Jirout, T.; Moravec, J.; Štancl, J.; Skočilas, J.; Žáková, T.: REVIEW OF NLGG VALVE POTENTIAL FOR ITS APPLICATION IN SELECTED INDUSTRIES FOR AMOT UK
Research Report	2016	Kudláček, J.; Zoubek, M.; Svoboda, J.; Drašnar, P.; Pakosta, M.; Kreibich, V.: THE DIAGNOSTIC SURVEY OF INNER SURFACES COATINGS OF THE BRIDGE ARCHES N. 19-028, INCLUDING CHEMICAL ANALYSIS OF USED COATINGS
Research Report	2016	Beránek, L.; Fuchs, P.: DEVELOPMENT AND DOCUMENTATION OF ILS SYSTEM FOR HANDLING CRANES IN HOT CELLS, RELIABILITY ANALYSIS AND RELIABILITY
Conference paper describing an application study	2017	Valášek, M.; Steinbauer, P.; Šika, Z.; Neusser, Z.: PROBLEMS, SOLUTIONS AND USAGE OF SHOCK ABSORBERS WITH DEGRESSIVE CHARACTERISTICS In: Proceedings of the 25th International Symposium on Dynamics of Vehicles on Roads and Tracks. Rockhampton: Central Queensland University, Rockhampton, Queensland, Australia, 2017
Spin-off with a stake held by the evaluated unit		
Spin-off with no stake held by the evaluated unit		
Prototypes	2015	Theiner, R.; Brabec, J.; Barák, K.; Kučera, J.; Helmich, M.; Sommer, T.; Malásek, T.; Čenský, T.: ULTRALIGHT AIRCRAFT UL-39 ALBI
	2015	Černý, J.; Novotný, C.; Doubrava, K.; Martunů, M.; Pavlata, P.: 1ST PROTOTYPE OF SANDWICH ROOF FOR EBN11 VEHICLE
	2016	Síbr, M.; Čejka, Z.; Růžička, P.: PROTOTYPE OF ACETABULUM REPLACEMENT
	2017	Hrdlička, F.; Dlouhý, T.; Hrdlička, J.; Sova, J.; Doubrava, K.: PROTOTYPE OF A NON-WOODEN BIOMASS BOILER
	2017	Krátký, L.; Jirout, T.; Procházka, P.: VARIABLE UNIT FOR LIQUID AND SOLID PHASE SEPARATION
Varieties and breeds		
Other		
Verified Technology	2017	Falta, J.; Sulitka, M.; Janota, M.; Kohút, P.; Smolík, J.; Frkal, V.; Stříteský, P.: PROVEN TECHNOLOGY -

		TOSHULIN - 2017: IMPROVING THE QUALITY OF		
		MACHINING OF THIN-WALLED PARTS		
Functional Sample	2017	Cvrček, L.; Denk, F.; Čejka, Z.; Unucka, P.; Gallo, J.; Joska,		
		L.: ORTHOPEDIC REPLACEMENT OF THE KNEE JOINT		
		VEKTOR		
Conference paper describing practical	2017	Valášek, M., Kovář, F.: IMPROVED CALIBRATION OF		
results		MACHINE TOOLS BY REDUNDANT MEASUREMENT, In:		
		Proceedings of the 8th ECCOMAS Thematic Conference		
		on MULTIBODY DYNAMICS 2017. Praha: CTU PH.		
		Production, 2017. p. 671-675.		
Functional Sample	2018	Skočilas, J.; Hoffman, P.; Jirout, T. SPRAY DRYER TA ČR		
		GAMA PP1 TG02010033		
Software	2018	Tichánek, R.; Bolehovský, O.: COMPUTATIONAL		
		MODELS FOR TWO STROKE ENGINE BRAKE		
		SIMULATIONS		

Note: "Licence" refers to a licence for a result of R&D&I in the broadest sense of the word (licences for patents, utility models, industrial designs; copyright licences for software and other works, and any other licences).

For the purposes of this methodology, a "spin-off" is a juridical person established to commercialise knowledge, usually with the inclusion/transfer of the rights to this knowledge to such juridical person. List all instances of legal persons.

3.6 Significant applied research results with an impact other than an economic one on society

3.6.1 Overview of applied research results for the 2014–2018 reporting period with an impact other than an economic one on society

Result type	Name	Anticipated impact
Research Report	Simeunovič, G.; Vyhlídal, T.: INDOOR CLIMATE ANALYSIS OF GREAT TOWER INTERIORS OF KARLSTEJN CASTLE, 2015.	Protection of indoor spaces and exhibited cultural monuments, especially historic paintings, and their preservation for future generations
Software	Zmrhal, V.: METHODOLOGICAL GUIDELINE FOR THE DESIGN OF SCHOOL VENTILATION – SOFTWARE, 2015.	Impact on children's health
Research Report	Dlouhý, T.: THE BASIC FEASIBILITY STUDY FOR THE USE OF HYDRIC RECLAMATION ON THE TERRITORY OF THE USTI REGION FOR ENERGY PURPOSES - PUMPED STORAGE POWER PLANT, 2016.	Impact on the environment, use of reclaimed areas after brown coal surface mining
Article	Vojtisek-Lom, M.; Beránek, V.; Klír, V.; Jindra, P.; Pechout, M.; Voříšek, T.: ON-ROAD AND LABORATORY EMISSIONS OF NO, NO2, NH3, N2O AND CH4 FROM LATE-MODEL EU LIGHT UTILITY VEHICLES: COMPARISON OF DIESEL AND CNG. The Science of the Total Environment. 2018, 616-617.	Impact on the environment, quality of life and human health
Article	Bíla, J.; Jura, J.; Novák, M.: APPLICATION OF FUZZY LOGIC FOR	Impact on the environment, the cooling effect of vegetation on the climate in large towns

MONITORING OF APPEARANCE OF	
HEAT WAVES IN LARGE TOWNS.	
MENDEL - Soft Computing Journal.	
2018, 24(1), 165-172.	

Note: List and describe a maximum of five results (in line with the Definitions of Types of Results) that have already been applied in practice, or that will realistically be applied. These are typically results from disciplines in the humanities and social sciences, for which you should briefly describe their anticipated impact.

3.11 Recognition in the international R&D&I community

3.11.1 Participation of the evaluated unit's academic staff on the editorial boards of international scientific journals in the 2014–2018 reporting period

Name, surname and title(s) of the evaluated unit's member of staff	Title, publisher, city(-ies) and country(-ies) of origin of the scientific journal
Michael Valášek, prof. Ing. DrSc.	MULTIBODY SYSTEM DYNAMICS, Springer Nature, CH
Michael Valášek, prof. Ing. DrSc.	VEHICLE SYSTEM DYNAMICS, Taylor & Francis, Abingdon, UK
Matej Daniel, prof. RNDr. Ph.D.	JOURNAL OF MECHANICS, Cambridge University Press, UK
Matej Daniel, prof. RNDr. Ph.D.	SCIENTIFIC REPORTS, Nature Publishing Group, UK
Jan Macek, prof. Ing. DrSc.	JOURNAL OF AUTOMOBILE ENGINEERING SAGE IMechE
	London UK
František Rieger, prof. Ing. DrSc.	CHEMICAL ENGINEERING AND EQUIPMENT, SIMPRESS,
	Warsaw, PL
Jan Mádl, prof. Ing. CSc	MECHANIK, Warsaw, PL
Tomáš Vyhlídal, prof. Ing. PhD.	KYBERNETIKA, Nakladatelství Academia, Institute of
	Information Theory and Automation of the Czech Academy of
	Sciences, Prague, CZ
Oldřich Vítek, doc. Ing. Ph.D.	MECCA JOURNAL OF MIDDLE EUROPEAN CONSTRUCTION
	AND DESIGN OF CARS, CTU in Prague, Prague, CZ
Matěj Sulitka, Ing. Ph.D.	MM SCIENCE JOURNAL; MM Publishing; Prague; CZ

Note: List a maximum of ten examples of academic staff's participation on the editorial boards of international scientific journals (e.g. editor, member of the editorial board, etc.).

3.11.2 The most significant invited lectures by the evaluated unit's academic staff at institutions in other countries during the 2014–2018 reporting period

Name, surname and title(s) of the evaluated unit's member of staff	Invited lecture title	Name of the host institution,
Sváček Petr, doc. RNDr. PhD.	ON TURBULENT FLOW APPROXIMATION BY FINITE ELEMENT METHOD	Modeling and Simulation of Transport Phenomena (MoST 2014). July 28-31, 2014, Treis-Karden, Germany
Tomáš Vyhlídal, prof. Ing., PhD.	ENERGY AND VENTILATION IN HISTORIC BUILDINGS	The impact of climate change on our cultural heritage. January 13-14 2014, L'Institut National du Patrimoine, Paris, France
Petr Špatenka, prof. RNDr. CSc.	PLASMA TREATMENT OF POWDER AND GRANULATES	29th National Symposium on Plasma Science & Technology (PLASMA 2014). December 8- 11, 2014, Mahatma Gandhi University, Kottayam, Kerala, India
Jan Suchánek, prof. Ing. CSc.	WHITE CAST IRONS – CURRENT TRENDS	30th Meeting of the International Tribology Council (IRG-WOEM). 2015 Lisbon, Portugal
Milan Růžička, prof. Ing. CSc.	SMART COMPOSITE HYBRID STRUCTURES	32nd Danubia – Adria Symposium on Advanced in Experimental Mechanics. September 22-25, 2015 Slovakia
Petr Kolář, doc. Ing. Ph.D.	WORKPIECE FIXTURE: IMPORTANT ELEMENT FOR IMPROVING MANUFACTURING PRODUCTIVITY AND ACCURACY OF LOW RIGIDITY COMPONENTS	13thInternationalConferenceonHighSpeedMachining:Progress inSpeedMachiningTechnology.October4-5,2016.,Metz,France
Jan Papuga, Ing. Ph.D.	VALIDATION OF FATIGUE PREDICTION MODELS AND OF FATIGUE SOLVERS	Workshop on Structural Integrity and Durability. April 11, 2017, Zagreb, Croatia
Petr Špatenka, prof. RNDr. CSc.	PLASMA TREATMENT OF SEEDS - AN ALTERNATIVE TO CHEMICAL DRESSING.	11thAsian-EuropeanConferenceonPlasmaSurfaceEngineering.InternationalConferenceCenter,September11-15,2017,JejuIsland,SouthKorea
Michal Vojtíšek, doc. M.Sc. Ph.D.	THE AIM FOR REALISTIC ASSESSMENT OF HEALTH EFFECTS OF COMBUSTION	German Chemical Society. Analytica. April 13, 2018, Munich, Germany

	ENGINE EMISSIONS	
	REDUCTION EFFORTS: REAL-	
	WORLD EMISSIONS,	
	UNREGULATED	
	POLLUTANTS, AND EXHAUST	
	TOXICITY	
Matěj Sulitka, Ing. Ph.D.	MACHINE TOOL AND	4. Wiener
	MACHINING PROCESS	Produktionstechnik
	DIGITAL TWINS FOR	Kongress. September 26-27,
	INCREASED PRODUCTIVITY	2018, IFT TU Vienna, Austria
	OF FINISHING MACHINING	

Note: List a maximum of ten examples.

3.11.3 The most significant lectures by foreign scientists and other guests relevant to the R&D&I field at the evaluated unit during the 2014–2018 reporting period

Name, surname and title(s) of the	Lecturer's employer at the time	Invited lecture title
lecturer	of the lecture	
Nejat Olgac, Prof. D.Eng.Sci.	Department of Mechanical	A JOURNEY ON TIME-
	Engineering, University of	DELAYED SYSTEMS:
	Connecticut, USA	THEORETICAL
		FUNDAMENTALS MEET
		PRACTICE. Invited lecture of a
		visiting professor at FME CTU
		in Prague, November 12,
		2017.
Jorge Angeles, Prof. Ph.D.	Department of Mechanical	KINEMATICS OF POINTING
	Engineering, McGill	MECHANISMS. Invited
	University, Montreal, Canada	lecture of a visiting professor
		at FME CTU in Prague,
		February 23, 2015
Zuheir Barsoum, prof.	KTH Royal Institute of	DESIGN AND FATIGUE OF
	Technology, Sweden	WELDMENTS. On: Workshop
		on Computational Fatigue
		Analysis. 2017, FME CTU in
		Prague, 13.,1516.11.2017
Michael Zäh, prof.	TU Munich, Germany	TRENDS IN MACHINE TOOL
		DESIGN AND USE
Tilman Becker, Dr.	DFKI - Deutsches	BIG DATA IN INDUSTRY 4.0
	Forschungszentrum für	THE SEEDS OF DIGITIZATION
	Künstliche Intelligenz,	
	Germany	
Steffen Ihlenfeldt, prof.	Fraunhofer IWU Dresden,	ENERGY EFFICIENT MACHINE
	Germany	TOOLS AND PRODUCTION
		SYSTEMS
Jorge Ambrosio, Prof. Ph.D.	Institute of Mechanical	MULTIBODY DYNAMICS
	Engineering, Instituto	FORMALISMS FOR
	Superior Técnico,	MULTIDISCIPLINARY

	Universidade Técnica de	APPLICATIONS: CURRENT
	Lisboa, Portugal	PROBLEMS AND
		CHALLENGES. 8th ECCOMAS
		Thematic Conference on
		Multibody Dynamics, FME
		CTU in Prague, June 19, 2017
Raffaella Sesana, Dr	Politecnico di Torino, Italy	STRESSES AND THERMAL
		EFFECTS: ENGINEERING
		RESEARCH APPLICATIONS
Alec Groysmann, Dr.	Haifa Chemistry, Israel	CORROSION IN SYSTEMS FOR
		STORAGE AND
		TRANSPORTATION OF
		PETROLEUM PRODUCTS AND
		BIOFUELS
Ning He, prof.	NUAA - Nanjing University of	HIGH PERFORMANCE
	Aeronautics and	MACHINING OF AEROSPACE
	Astronautics, China	PARTS

Note: Relevant solely for the R&D&I field. List a maximum of ten examples.

3.11.4 The most significant elected membership in foreign of professional societies relevant to the R&D&I field at the evaluated unit during the 2014–2018 reporting period

Name, surname and title(s) of the evaluated unit's member of staff	Name of professional society	Type of membership
Michael Valášek, prof. Ing. DrSc.	The International Association for Vehicle System Dynamics (IAVSD)	Secretary general
František Hrdlička, prof. Ing. CSc.	International Energy Agency (IEA) Technology Collaboration Programme (TCP) in the field of Fluidized Bed Conversion (FBC)	Executive committee
Tomáš Vyhlídal, prof. Ing. PhD.	International Federation of Automatic Control (IFAC)	Vice-president for industrial activities - TC 2.2 Linear Control Systems
Miloš Lain, Ing. Ph.D.	Federation of European Heating, Ventilation and Air Conditioning associations (REHVA)	Vice-president, member of the Board of Directors
Jiří Nožička, prof. Ing. CSc.	Von Karman Institute (VKI)	Representative of the Czech Republic on the Scientific Advisory Committee for VKI
Pavel Šafařík, prof. Ing. CSc.	Measuring Techniques in Turbomachinery (MTT)	Member the Senior Scientific and Advisory Committee
Michal Vojtíšek, doc. M.Sc., Ph.D.	European Aerosol Assembly (EAA)	Vice-chairman of the working group on particles from combustion processes

Jan Hošek, doc. Ing, PhD.	European Committee for	Vice-chairman of Technical
	Standardization (CEN)	Committee TC 352 –
		Nanotechnology
Michael Valášek, prof. Ing. DrSc.	International Federation for	Representative of the Czech
	the Theory of Mechanisms	Republic in the Technical
	and Machines (IFToMM)	Committee for Multibody
		Dynamics
Tomáš Jirout, prof. Ing. Ph.D.	European Federation of	Representative of the Czech
	Chemical Engineering (EFCE)	Republic in the Working Party
		on Mixing

Note: List a maximum of ten examples.

SUMMARY LIST OF ADDITIONAL DOCUMENTATION IN MODULE M3

Document Title	Criterion	Location (HTML link)
Social benefit of R&D&I	3.1	https://www.fs.cvut.cz/en/science-
		research/science-research-at-
		fme/en-social-benefit-rdi/
Centres of competence	3.2	https://www.fs.cvut.cz/en/science-
		research/applied-research-
		projects/en-centres-of-
		<u>competence/</u>
Revenues from non-public sources	3.4	https://www.fs.cvut.cz/en/science-
		research/science-research-at-
		fme/en-revenues-non-public/
Results of applied reserach	3.5	https://www.fs.cvut.cz/en/science-
		research/applied-research-
		projects/en-applied-research-
		<u>results/</u>
Significant applied research results with an	3.6	https://www.fs.cvut.cz/en/science-
impact other than an economic one on society		research/applied-research-
		projects/en-results-other-than-
		economic/
The most significant interactions with the non-	3.7	https://www.fs.cvut.cz/en/science-
academic application / corporate sphere		research/applied-research-
		projects/en-results-non-academic/
IP protection and technology transfer at CTU	3.8 and 3.9	http://evaluation-
		cvut.cz/files/H2020-
		Technologytransfer.pdf
Awards for R&D&I	3.10	https://www.fs.cvut.cz/en/science-
		research/en-awards-rdi/
The most significant activities in the	3.12	https://www.fs.cvut.cz/en/science-
popularisation of R&D&I and communication		research/science-research-at-
with the public		fme/en-popularisation-rdi/